Assessment of the non‐hydrostatic effect on the upper atmosphere using a general circulation model (GCM)
暂无分享,去创建一个
Yue Deng | Aaron J. Ridley | Arthur D. Richmond | A. Ridley | Han L. Liu | Y. Deng | Han-Li Liu | A. Richmond | Yue Deng
[1] S. E. Pryse,et al. First direct evidence of meso-scale variability on ion-neutral dynamics using co-located tristatic FPIs and EISCAT radar in Northern Scandinavia , 2005 .
[2] Gábor Tóth,et al. The Global Ionosphere-Thermosphere Model , 2006 .
[3] C. Hines,et al. Discussion of Ionization Effects on the Propagation of Acoustic‐Gravity Waves in The Ionosphere , 1970 .
[4] G. Hernández,et al. Vertical winds in the thermosphere within the polar cap , 1995 .
[5] G. Hernández,et al. Simultaneous measurements of large vertical winds in the upper and lower thermosphere , 1995 .
[6] Yue Deng,et al. Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution, and vertical velocity , 2007 .
[7] Raymond G. Roble,et al. A three‐dimensional general circulation model of the thermosphere , 1981 .
[8] M. Conde,et al. Characterization of acoustic–gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data , 2002 .
[9] William C. Skamarock,et al. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..
[10] T. Fuller‐Rowell,et al. A Three-Dimensional Time-Dependent Global Model of the Thermosphere , 1980 .
[11] R. Pfeffer,et al. Acoustic-Gravity Wave Propagation from Nuclear Explosions in the Earth's Atmosphere , 1962 .