Transmitter circuits in the vertebrate retina

Con~n~

[1]  B. Ehinger,et al.  Immunohistochemical and quantitative analysis of 5-hydroxytryptamine in the retina of some vertebrates , 1983, Neurochemistry International.

[2]  S. Massey,et al.  Inhibition of aspartate release from the retina of the an aesthetised rabbit by stimulation with light flashes , 1979, Neuroscience Letters.

[3]  J. Dowling,et al.  Effects of acidic amino acid antagonists upon the spectral properties of carp horizontal cells: circuitry of the outer retina , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  D. Lam,et al.  The release of gamma‐aminobutyric acid from horizontal cells of the goldfish (Carassius auratus) retina. , 1984, The Journal of physiology.

[5]  J. Dowling,et al.  Carp horizontal cells in culture respond selectively to L-glutamate and its agonists. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[6]  P. Madtes,et al.  Postnatal development of 3H‐GABA‐ accumulating cells in rabbit retina , 1986, The Journal of comparative neurology.

[7]  P. Marshburn,et al.  The role of GABA in the regulation of the dopamine/tyrosine hydroxylase-containing neurons of the rat retina , 1981, Brain Research.

[8]  P. Witkovsky,et al.  The actions of gamma‐aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina. , 1984, The Journal of physiology.

[9]  T. Jessell,et al.  Distribution of substance P in the pigeon brain , 1978, Journal of neurochemistry.

[10]  E. V. Famiglietti,et al.  Starburst amacrine cells: morphological constancy and systematic variation in the anisotropic field of rabbit retinal neurons , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  J. Dowling,et al.  Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. , 1985, Science.

[12]  E. V. Famiglietti,et al.  On and off pathways through amacrine cells in mammalian retina: The synaptic connections of “starburst” amacrine cells , 1983, Vision Research.

[13]  J Toyoda,et al.  Application of transretinal current stimulation for the study of bipolar-amacrine transmission , 1984, The Journal of general physiology.

[14]  R H Masland,et al.  The shape and arrangement of the cholinergic neurons in the rabbit retina , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  C. Hampton,et al.  Autoradiographic analysis of 3H‐glutamate, 3H‐dopamine, and 3H‐GABA accumulation in rabbit retina after kainic acid treatment , 1983, Journal of neuroscience research.

[17]  S. Massey,et al.  The cholinergic amacrine cells of rabbit retina receive on and off input: An analysis of [3H]-ACh release using 2-amino-4-phosphonobutyric acid (APB) and chloride free medium , 1983, Vision Research.

[18]  C. Bader,et al.  Biochemical characterization and cellular localization of the cholinergic system in the chicken retina , 1977, Brain Research.

[19]  S. Bloomfield,et al.  A physiological and morphological study of the horizontal cell types of the rabbit retina , 1982, The Journal of comparative neurology.

[20]  J. Stone,et al.  Morphology of catecholamine-containing amacrine cells in the cat's retina, as seen in retinal whole mounts , 1979, Brain Research.

[21]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  W. Quay,et al.  Retinal and pineal hydroxyindole-o-methyl transferase activity in vertebrates. , 1965, Life sciences.

[23]  W. W. Morgan,et al.  A GABAergic Influence on the Light‐Induced Increase in Dopamine Turnover in the Dark‐Adapted Rat Retina In Vivo , 1980, Journal of neurochemistry.

[24]  D. M. Lam,et al.  ENDOGENOUS LEVELS OF NEUROTRANSMITTER CANDIDATES IN PHOTORECEPTOR CELLS OF THE TURTLE RETINA , 1979, Journal of neurochemistry.

[25]  P. Chow,et al.  Effect of light and darkness on the in vivo release of N-acetylserotonin and melatonin by the retina of guinea pigs. , 1982, Neuroendocrinology.

[26]  B Ehinger,et al.  Synaptic organization of the amine-containing interplexiform cells of the goldfish and Cebus monkey retinas. , 1975, Science.

[27]  T. Malmfors Evidence of adrenergic neurons with synaptic terminals in the retina of rats demonstrated with fluorescence and electron microscopy. , 1963, Acta physiologica Scandinavica.

[28]  M. Straschill Actions of drugs on single neurons in the cat's retina , 1968 .

[29]  P. Marshburn,et al.  Activation of Retinal Tyrosine Hydroxylase In Vitro by Cyclic AMP‐Dependent Protein Kinase: Characterization and Comparison to Activation In Vivo by Photic Stimulation , 1982, Journal of neurochemistry.

[30]  M. Piccolino,et al.  Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3':5'-monophosphate in horizontal cells of turtle retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  G. Fagg,et al.  Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors , 1984, Brain Research Reviews.

[32]  J. Belgum,et al.  Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells. , 1984, The Journal of physiology.

[33]  D. A. Brown Slow cholinergic excitation — a mechanism for increasing neuronal excitability , 1983, Trends in Neurosciences.

[34]  T. Voigt,et al.  Analysis of a glycinergic inhibitory pathway in the cat retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[36]  A. Kaneko Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina , 1970, The Journal of physiology.

[37]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[38]  C. Watt,et al.  Interactions between enkephalin and GABA in avian retina , 1984, Nature.

[39]  B. Ehinger NEUROTRANSMITTER SYSTEMS IN THE RETINA , 1982, Retina.

[40]  R. Zalutsky,et al.  Neurotensin actions in the retina: Mechanisms and variability , 1986, Brain Research.

[41]  M. Geffard,et al.  Immunocytochemical detection of acetylcholine in the rat central nervous system. , 1985, Science.

[42]  D. Bok,et al.  Melatonin-binding in the frog retina: autoradiographic and biochemical analysis. , 1986, Investigative ophthalmology & visual science.

[43]  C. K. Mitchell,et al.  Analysis of pre- and postsynaptic factors of the serotonin system in rabbit retina , 1985, The Journal of cell biology.

[44]  H. Ikeda,et al.  Acetylcholine may be an excitatory transmitter mediating visual excitation of ‘transient’ cells with the periphery effect in the cat retina: Iontophoretic studiesin vivo , 1982, Neuroscience.

[45]  S. Snyder,et al.  Brain peptides as neurotransmitters. , 1980, Science.

[46]  Helga Kolb,et al.  Dopamine-containing amacrine cells of rhesus monkey retina parallel rods in spatial distribution , 1984, Brain Research.

[47]  M. Neal,et al.  The effect of 2-amino-4-phosphonobutyrate (APB) on acetylcholine release from the rabbit retina: Evidence for on-channel input to cholinergic amacrine cells , 1981, Neuroscience Letters.

[48]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Satoru Kato,et al.  Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina , 1983, Nature.

[50]  R. Pourcho Dopaminergic amacrine cells in the cat retina , 1982, Brain Research.

[51]  R. Weiler,et al.  Co-localization of neurotensin-like immunoreactivity and 3H-glycine uptake system in sustained amacrine cells of turtle retina , 1984, Nature.

[52]  M. Ariel,et al.  Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells , 1982, The Journal of physiology.

[53]  J. Dowling,et al.  Inner plexiform circuits in the carp retina: Effects of cholinergic agonists, GABA, and substance P on the ganglion cells , 1982, Brain Research.

[54]  A. Ishida,et al.  D-aspartate potentiates the effects of L-glutamate on horizontal cells in goldfish retina. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Hollyfield,et al.  Glycinergic neurons in the human retina , 1984, The Journal of comparative neurology.

[56]  S. Yazulla Stimulation of GABA release from retinal horizontal cells by potassium and acidic amino acid agonists , 1983, Brain Research.

[57]  D. M. Lam,et al.  The emergence, localization and maturation of neurotransmitter systems during development of the retina in Xenopus laevis. I. γ‐aminobutyric acid , 1979, The Journal of comparative neurology.

[58]  L. Churchill,et al.  An indoleamine system in photoreceptor cell terminals of the Long-Evans rat retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  S. Massey,et al.  The release of acetylcholine and amino acids from the rabbit retina in vivo , 1980, Neurochemistry International.

[60]  J. Polak,et al.  Regulatory peptides: key factors in the control of bodily functions. , 1983, British medical journal.

[61]  M. Neal,et al.  Evidence for a cholinergic inhibitory feed‐back mechanism in the rabbit retina. , 1983, The Journal of physiology.

[62]  K. Negishi,et al.  A GABA antagonist, bicuculline, exerts its uncoupling action on external horizontal cells through dopamine cells in carp retina , 1983, Neuroscience Letters.

[63]  S. Tsuji Electron microscopical autoradiography of [3H]choline fixed by phosphomolybdic acid in the motor nerve terminal , 1984, Neuroscience Letters.

[64]  D. Cardinali,et al.  Metabolism of serotonin by the rat retina in vitro , 1971, Journal of neurochemistry.

[65]  S. Yazulla Evoked efflux of [3H]GABA from goldfish retina in the dark , 1985, Brain Research.

[66]  M. Tachibana,et al.  Permeability changes induced by L‐glutamate in solitary retinal horizontal cells isolated from Carassius auratus. , 1985, The Journal of physiology.

[67]  Teruya Ohtsuka,et al.  Effects of aspartate and glutamate on the bipolar cells in the carp retina , 1975, Vision Research.

[68]  E. Raviola,et al.  Structure of the synaptic membranes in the inner plexiform layer of the retina: A freeze‐fracture study in monkeys and rabbits , 1982, The Journal of comparative neurology.

[69]  P. Marchiafava The organization of inputs establishes two functional and morphologically identifiable classes of ganglion cells in the retina of the turtle , 1983, Vision Research.

[70]  D. Lam,et al.  The uptake and release of [3H]glycine in the goldfish retina. , 1980, The Journal of physiology.

[71]  B. Boycott,et al.  Morphology and topography of on- and off-alpha cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[72]  J. Dowling,et al.  Pharmacological properties of isolated horizontal and bipolar cells from the skate retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  D. Cardinali Melatonin.l A mammalian pineal hormone. , 1981, Endocrine reviews.

[74]  A Kaneko,et al.  Responses of solitary retinal horizontal cells from Carassius auratus to L‐glutamate and related amino acids. , 1984, The Journal of physiology.

[75]  R H Masland,et al.  Autoradiographic identification of acetylcholine in the rabbit retina , 1979, The Journal of cell biology.

[76]  S. Massey,et al.  A tonic gamma-aminobutyric acid-mediated inhibition of cholinergic amacrine cells in rabbit retina , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  Rf Miller,et al.  Characterization of an extended glutamate receptor of the on bipolar neuron in the vertebrate retina , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  T. N. Thomas,et al.  5-Hydroxytryptamine -- a neurotransmitter of bovine retina. , 1979, Experimental eye research.

[79]  J. Ferrendelli,et al.  Indoleamine‐Sensitive Adenylate Cyclase in Rabbit Retina: Characterization and Distribution , 1985, Journal of neurochemistry.

[80]  E. A. Schwartz,et al.  Evidence for the identification of synaptic transmitters released by photoreceptors of the toad retina. , 1983, The Journal of physiology.

[81]  R. Pourcho Uptake of [3H]glycine and [3H]GABA by amacrine cells in the cat retina , 1980, Brain Research.

[82]  R. Marc,et al.  (3H) glycine‐accumulating neurons of the human retina , 1985, The Journal of comparative neurology.

[83]  P. Rakic,et al.  GABA and GAD immunoreactiviy of photoreceptor terminals in primate retina , 1986, Nature.

[84]  I. Holmgren-Taylor Synaptic organization of the indoleamine-accumulating neurons in the cyprinid retina. , 1983, Cell and tissue research.

[85]  J. Dowling,et al.  On the sensitivity of H1 horizontal cells of the carp retina to glutamate, aspartate and their agonists , 1984, Brain Research.

[86]  R. Dacheux,et al.  Horizontal cells in the retina of the rabbit , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  J. Dowling,et al.  Isolated horizontal cells from carp retina demonstrate dopamine-dependent accumulation of cyclic AMP. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[88]  M. Slaughter,et al.  Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. III. Amacrine-mediated inhibitory influences on ganglion cell receptive-field organization: a model. , 1981, Journal of neurophysiology.

[89]  F. Amthor,et al.  Morphology of on-off direction-selective ganglion cells in the rabbit retina , 1984, Brain Research.

[90]  J. Dowling,et al.  Effects of GABA and glycine on the distal cells of the cyprinid retina , 1980, Brain Research.

[91]  I. Holmgren-Taylor Electron microscopical observations on the indoleamine‐accumulating neurons and their synaptic connections in the retina of the cat , 1982, The Journal of comparative neurology.

[92]  N. Osborne Uptake, localization and release of serotonin in the chick retina. , 1982, The Journal of physiology.

[93]  N. Osborne,et al.  Localization of cholecystokinin immunoreactivity in amacrine cells of the retina , 1981, Neuroscience Letters.

[94]  Paul A. Coleman,et al.  Kynurenic acid distinguishes kainate and quisqualate receptors in the vertebrate retina , 1986, Brain Research.

[95]  S. Naghshineh,et al.  Action of glutamate and aspartate analogues on rod horizontal and bipolar cells , 1981, Nature.

[96]  P. Sterling Microcircuitry of the cat retina. , 1983, Annual review of neuroscience.

[97]  A. Ishida,et al.  Quisqualate and L-glutamate inhibit retinal horizontal-cell responses to kainate. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[98]  W. Stell The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. , 1967, The American journal of anatomy.

[99]  J. Besharse,et al.  Regulation of indoleamine N-Acetyltransferase activity in the retina: Effects of light and dark, protein synthesis inhibitors and cyclic nucleotide analogs , 1983, Brain Research.

[100]  B. Ehinger,et al.  Autoradiography of some suspected neurotransmitter substances: GABA glycine, glutamic acid, histamine, dopamine, and L-dopa. , 1971, Brain research.

[101]  H. Kolb,et al.  Chapter 2 Neural architecture of the cat retina , 1984 .

[102]  R. Masland Acetylcholine in the retina , 1980, Neurochemistry International.

[103]  W. Stell,et al.  Immunocytochemical localization of putative cholinergic neurons in the goldfish retina , 1984, Neuroscience Letters.

[104]  Rf Miller,et al.  The role of excitatory amino acid transmitters in the mudpuppy retina: an analysis with kainic acid and N-methyl aspartate , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  Malcolm M. Slaughter,et al.  Identification of a distinct synaptic glutamate receptor on horizontal cells in mudpuppy retina , 1985, Nature.

[106]  B. Ehinger CHAPTER 7 – BIOGENIC MONOAMINES AS TRANSMITTERS IN THE RETINA , 1976 .

[107]  C. Nishimura,et al.  Alteration of GABA system in frog retina following short light and dark adaptations — a quantitative comparison with retinal taurine , 1981, Brain Research.

[108]  J. Dowling,et al.  Synaptic organization of the dopaminergic neurons in the rabbit retina , 1978, The Journal of comparative neurology.

[109]  E. V. Famiglietti,et al.  ‘Starburst’ amacrine cells and cholinergic neurons: mirror-symmetric ON and OFF amacrine cells of rabbit retina , 1983, Brain Research.

[110]  Helga Kolb,et al.  Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study , 1981, Vision Research.

[111]  J. Schnitzer,et al.  Horizontal cells of the mouse retina contain glutamic acid decarboxylase-like immunoreactivity during early developmental stages , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  J. Dowling,et al.  Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[113]  N. Ling,et al.  Corticotropin-releasing factor in the amacrine cells of the chicken retina , 1984, Brain Research.

[114]  K. Negishi,et al.  Effects of catecholamines and related compounds on horizontal cells in the fish retina , 1979, Journal of neuroscience research.

[115]  R. Eskay,et al.  Substance P activity in the bullfrog retina: localization and identification in several vertebrate species. , 1981, Science.

[116]  S. Massey,et al.  The light evoked release of acetylcholine from the rabbit retina iN vivo and its inhibition by γ‐aminobutyric acid , 1979, Journal of neurochemistry.

[117]  N. Osborne,et al.  Serotonin: A transmitter candidate in the vertebrate retina , 1981, Neurochemistry International.

[118]  H. Wässle,et al.  Indoleamine‐mediated reciprocal modulation of on‐centre and off‐centre ganglion cell activity in the retina of the cat. , 1984, The Journal of physiology.

[119]  D. Redburn,et al.  Localization and characterization of dopamine receptors within two synaptosome fractions of rabbit and bovine retina. , 1980, Experimental eye research.

[120]  J. Dowling,et al.  Effects of Vasoactive Intestinal Peptide and Other Peptides on Cyclic AMP Accumulation in Intact Pieces and Isolated Horizontal Cells of the Teleost Retina , 1983, Journal of neurochemistry.

[121]  H. Karten,et al.  Neurotensin-like and somatostatin-like immunoreactivity within amacrine cells of the retina , 1981, Neuroscience.

[122]  J. Kleinschmidt,et al.  Carrier-mediated release of GABA from retinal horizontal cells , 1983, Brain Research.

[123]  B. Ehinger,et al.  Destruction of retinal dopamine-containing neurons in rabbit and goldfish. , 1977, Experimental eye research.

[124]  D. I. Vaney,et al.  ‘Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[125]  R. Altschuler,et al.  Aspartate aminotransferase‐like immunoreactivity in the guinea pig and monkey retinas , 1985, The Journal of comparative neurology.

[126]  J. Caldwell,et al.  Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. , 1978, The Journal of physiology.

[127]  R. Masland,et al.  Effect of stimulation with light on synthesis and release of acetylcholine by an isolated mammalian retina. , 1976, Journal of neurophysiology.

[128]  Helga Kolb,et al.  Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina , 1983, Vision Research.

[129]  R. Marc,et al.  Glycinergic pathways in the goldfish retina , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[130]  M. Slaughter,et al.  An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. , 1983, Science.

[131]  D. M. Lam,et al.  The emergence, localization, and maturation of neurotransmitter systems during development of the retina in xenopus laevis: II. Glycine , 1981, The Journal of comparative neurology.

[132]  M. Djamgoz,et al.  Physiology of neuroactive peptides in vertebrate retina. , 1983, Biochemical Society transactions.

[133]  K I Naka,et al.  gamma-Aminobutyric acid: a neurotransmitter candidate for cone horizontal cells of the catfish retina. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[134]  G. Fain,et al.  Mechanisms of synaptic transmission in the retina , 1983, Vision Research.

[135]  C. Watt,et al.  The coexistence of two neuroactive peptides in a subpopulation of retinal amacrine cells , 1985, Brain Research.

[136]  D. M. Lam Biosynthesis of acetylcholine in turtle photoreceptors. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[137]  D. M. Lam,et al.  The gamma-aminobutyric acid system in rabbit retina: localization by immunocytochemistry and autoradiography. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[138]  D. A. Godfrey,et al.  Distributions of aspartate aminotransferase and malate dehydrogenase activities in rat retinal layers. , 1985, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[139]  B. Ehinger,et al.  5-Hydroxytryptamine in the retina of some mammals. , 1981, Experimental eye research.

[140]  S. Yazulla,et al.  Binding and uptake of the GABA analogue, 3H-muscimol, in the retinas of goldfish and chicken. , 1980, Investigative ophthalmology & visual science.

[141]  B. Ehinger,et al.  Chemical removal of indoleamine accumulating terminals in rabbit and goldfish retina. , 1978, Experimental eye research.

[142]  W. Stell,et al.  The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[143]  A. Hendrickson,et al.  Localization of substance P-like immunoreactivity within the monkey retina. , 1982, Investigative ophthalmology & visual science.

[144]  K Naka,et al.  Functional organization of catfish retina. , 1977, Journal of neurophysiology.

[145]  H. Ikeda,et al.  Transmitters mediating inhibition of ganglion cells in the cat retina: Iontophoretic studies in vivo , 1983, Neuroscience.

[146]  J. Dowling,et al.  Dopamine receptors in the retina may all be linked to adenylate cyclase , 1979, Nature.

[147]  E. Agardh,et al.  Retinal GABA neuron labelling with [3H]isoguvacine in different species. , 1983, Experimental eye research.

[148]  M. Ariel,et al.  FUNCTION OF NEUROTRANSMITTERS IN THE RETINA , 1982, Retina.

[149]  N. Osborne,et al.  Serotonin‐Containing Neurones in Vertebrate Retinas , 1982, Journal of neurochemistry.

[150]  J. Watkins,et al.  L-Glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes , 1984, Nature.

[151]  Carl B. Watt,et al.  The signature hypothesis: Co-localizations of neuroactive substances as anatomical probes for circuitry analyses , 1985, Vision Research.

[152]  R. Dacheux,et al.  Horizontal cells in the retina of the rabbit , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[153]  B Ehinger,et al.  The interplexiform cell system - I. Synapses of the dopaminergic neurons of the goldfish retina , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[154]  P. H. Schiller Central connections of the retinal ON and OFF pathways , 1982, Nature.

[155]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[156]  D. McDougal,et al.  THE DISTRIBUTION OF CHOLINE ACETYLTRANSFERASE ACTIVITY IN VERTEBRATE RETINA 1 , 1976, Journal of neurochemistry.

[157]  M. Dubocovich,et al.  Enkephalins modulate [3H]dopamine release from rabbit retina in vitro. , 1983, The Journal of pharmacology and experimental therapeutics.

[158]  H. Wässle,et al.  Number and distribution of putative cholinergic neurons in the cat retina , 1985, Neuroscience Letters.

[159]  D. Lam,et al.  L-glutamic acid: a neurotransmitter candidate for cone photoreceptors in human and rat retinas. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[160]  K. Negishi,et al.  5-Hydroxytryptamine: Its facilitative action on [3H]dopamine release from the retina , 1983, Vision Research.

[161]  S. Schein,et al.  Staining of blue-sensitive cones of the macaque retina by a fluorescent dye. , 1981, Science.

[162]  M. Neal Chapter 7 Cholinergic mechanisms in the vertebrate retina , 1983 .

[163]  M. Dubocovich Melatonin is a potent modulator of dopamine release in the retina , 1983, Nature.

[164]  C. Galli,et al.  Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. , 1978, Science.

[165]  Helga Kolb,et al.  Rod pathways in the retina of the cat , 1983, Vision Research.

[166]  J. Mills,et al.  Acetylcholine synthesis by displaced amacrine cells. , 1980, Science.

[167]  R. Nelson,et al.  AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.

[168]  J. Dowling,et al.  Vasoactive intestinal peptide alters membrane potential and cyclic nucleotide levels in retinal horizontal cells. , 1983, Science.

[169]  J. B. Hutchins,et al.  Acetylcholine receptors in the human retina. , 1985, Investigative ophthalmology & visual science.

[170]  H. Saito Pharmacological and morphological differences between X- and Y-type ganglion cells in the cat's retina , 1983, Vision Research.

[171]  H. Wässle,et al.  Action and localization of gamma‐aminobutyric acid in the cat retina. , 1985, The Journal of physiology.

[172]  J. Dowling,et al.  Does substance P have a physiological role in the carp retina , 1980 .

[173]  H. Kolb The inner plexiform layer in the retina of the cat: electron microscopic observations , 1979, Journal of neurocytology.

[174]  B. Burnside,et al.  Dopamine Inhibits Forskolin‐ and 3‐Isobutyl‐1‐Methylxanthine‐Induced Dark‐Adaptive Retinomotor Movements in Isolated Teleost Retinas , 1985, Journal of neurochemistry.

[175]  P Sterling,et al.  Four types of amacrine in the cat retina that accumulate GABA , 1983, The Journal of comparative neurology.

[176]  M. Slaughter,et al.  Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. II. Amacrine and ganglion cells. , 1981, Journal of neurophysiology.

[177]  R. Marc,et al.  Uptake of aspartic and glutamic acid by photoreceptors in goldfish retina. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[178]  J. Ferrendelli,et al.  Adenylate Cyclases in the Vertebrate Retina: Distribution and Characteristics in Rabbit and Ground Squirrel , 1982, Journal of neurochemistry.

[179]  M. Neal,et al.  Autoradiographic localization of 3 H-GABA in rat retina. , 1972, Nature: New biology.

[180]  G. Brown,et al.  Immunohistological localization of N-acetylindolealkylamines in pineal gland, retina and cerebellum. , 1974, Brain research.

[181]  J. E. Vaughn,et al.  GABAergic amacrine cells in rat retina: Immunocytochemical identification and synaptic connectivity , 1981, The Journal of comparative neurology.

[182]  Jang-Yen Wu,et al.  Immunocytochemical localization of l-glutamate decar☐ylase, gamma-aminobutyric acid transaminase, cysteine sulfinic acid decar☐ylase, aspartate aminotransferase and somatostatin in rat retina , 1983, Brain Research.

[183]  R. Nicoll,et al.  Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. , 1983, Science.

[184]  J. Dowling,et al.  Roles of aspartate and glutamate in synaptic transmission in rabbit retina. II. Inner plexiform layer. , 1985, Journal of neurophysiology.

[185]  C. W. Oyster,et al.  Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[186]  Malcolm M. Slaughter,et al.  Bipolar cells in the mudpuppy retina use an excitatory amino acid neurotransmitter , 1983, Nature.

[187]  D. Puro,et al.  γ-Aminobutyric acid-mediated inhibition at cholinergic synapses formed by cultured retinal neurons , 1985, Brain Research.

[188]  S. Massey,et al.  The effects of 2-amino-4-phosphonobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina , 1983, Vision Research.

[189]  B. Ehinger,et al.  Light-evoked release of glycine from cat and rabbit retina , 1976, Brain Research.

[190]  J. Caldwell,et al.  New properties of rabbit retinal ganglion cells. , 1978, The Journal of physiology.

[191]  W. Müller,et al.  Specific [3H]strychnine binding associated with glycine receptors in bovine retina , 1981, Brain Research.

[192]  W. Stell,et al.  An opiate system in the goldfish retina , 1981, Nature.

[193]  H. Ikeda,et al.  Aspartate may be an excitatory transmitter mediating visual excitation of ‘sustained’ but not ‘transient’ cells in the cat retina: Iontophoretic studiesin vivo , 1982, Neuroscience.

[194]  R. Masland,et al.  The functions of acetylcholine in the rabbit retina , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[195]  B. Boycott,et al.  Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina , 1981, The Journal of comparative neurology.

[196]  M. Neal,et al.  Effect of excitatory amino acids on gamma‐aminobutyric acid release from frog horizontal cells. , 1985, The Journal of physiology.

[197]  J. Dowling,et al.  Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. , 1969, Journal of neurophysiology.

[198]  R. Pourcho,et al.  A combined golgi and autoradiographic study of (3H)glycine‐accumulating amacrine cells in the cat retina , 1985, The Journal of comparative neurology.

[199]  A Kaneko,et al.  Effects of L‐glutamate on the anomalous rectifier potassium current in horizontal cells of Carassius auratus retina. , 1985, The Journal of physiology.

[200]  R. Jensen,et al.  Effects of dopamine antagonists on receptive fields of brisk cells and directionally selective cells in the rabbit retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[201]  H. Wässle,et al.  Action and localization of glycine and taurine in the cat retina. , 1985, The Journal of physiology.

[202]  Koella Wp Serotonin and sleep. , 1969 .

[203]  J. Dowling,et al.  Fluorescence and electron microscopical observations on the amine‐accumulating neurons of the cebus monkey retina , 1980, The Journal of comparative neurology.

[204]  Stephen C. Massey,et al.  Light evoked release of acetylcholine in response to a single flash: cholinergic amacrine cells receive ON and OFF input , 1985, Brain Research.

[205]  R H Masland,et al.  Acetylcholine-synthesizing amacrine cells: identification and selective staining by using radioautography and fluorescent markers , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[206]  J. Wu,et al.  Immunocytochemical localization of GABA neurons in the rabbit and frog retina , 1980, Brain Research Bulletin.

[207]  M. Voaden,et al.  Autoradiographic identification of the cells accumulating3H γ-aminobutyric acid in mammalian retinae: A species comparison , 1975, Vision Research.

[208]  S. Binkley,et al.  N-acetyltransferase activity responds to environmental lighting in the eye as well as in the pineal gland , 1979, Nature.

[209]  W. Stell,et al.  GABA‐ergic pathways in the goldfish retina , 1978, The Journal of comparative neurology.

[210]  W. Levick,et al.  Brisk and sluggish concentrically organized ganglion cells in the cat's retina , 1974, The Journal of physiology.

[211]  M. Neal,et al.  Effect of gamma‐aminobutyric acid agonists, glycine, taurine and neuropeptides on acetylcholine release from the rabbit retina. , 1983, The Journal of physiology.

[212]  M. Ariel,et al.  Effects of cholinergic drugs on receptive field properties of rabbit retinal ganglion cells , 1982, The Journal of physiology.

[213]  J. Dowling,et al.  The interplexiform cell system II. Effects of dopamine on goldfish retinal neurones , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[214]  D. Pollen,et al.  Neurotransmission in central nervous tissue: a study of isolated rabbit retina. , 1969, Journal of neurophysiology.

[215]  P Sterling,et al.  Accumulation of (3H)glycine by cone bipolar neurons in the cat retina , 1986, The Journal of comparative neurology.

[216]  Malcolm M. Slaughter,et al.  Excitatory amino acid receptors of the retina: diversity of subtypes and conductance mechanisms , 1986, Trends in Neurosciences.

[217]  H. Kolb,et al.  A17: a broad-field amacrine cell in the rod system of the cat retina. , 1985, Journal of neurophysiology.

[218]  P. Lukasiewicz,et al.  Synaptic transmission at N‐methyl‐D‐aspartate receptors in the proximal retina of the mudpuppy. , 1985, The Journal of physiology.

[219]  K. Negishi,et al.  Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[220]  R H Masland,et al.  Responses to acetylcholine of ganglion cells in an isolated mammalian retina. , 1976, Journal of neurophysiology.

[221]  A. W. Kirby The effect of strychnine, bicuculline, and picrotoxin on X and Y cells in the cat retina , 1979, The Journal of general physiology.

[222]  M. Slaughter,et al.  Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. I. Receptors, horizontal cells, bipolars, and G-cells. , 1981, Journal of Neurophysiology.

[223]  A. Lerner,et al.  STRUCTURE OF MELATONIN1 , 1959 .

[224]  R. Pourcho Autoradiographic localization of [3H]muscimol in the cat retina , 1981, Brain Research.

[225]  Ingrid Holmbren-Taylor Ultrastructure and synapses of the [3H]dopamine-accumulating neurons in the retina of the rabbit. , 1982 .

[226]  S. Yazulla Chapter 1 GABAergic mechanisms in the retina , 1986 .

[227]  D. Goebel,et al.  Autoradiographic studies of [3H]-glycine, [3H]-GABA, and [3H]-muscimol uptake in the mudpuppy retina. , 1984, Experimental eye research.

[228]  N. Nadi,et al.  Glycine: Inhibition from the Sacrum to the Medulla , 1978 .

[229]  R. Pourcho,et al.  Neuronal subpopulations in cat retina which accumulate the GABA agonist, (3H)muscimol: A combined Golgi and autoradiographic study , 1983, The Journal of comparative neurology.

[230]  M. Neal,et al.  Effect of excitatory amino acids and analogues on [3H]acetylcholine release from amacrine cells of the rabbit retina. , 1985, The Journal of physiology.

[231]  R. Masland,et al.  Local order among the dendrites of an amacrine cell population , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[232]  T. Ishibashi,et al.  Pathogenesis of drusen in the primate. , 1986, Investigative ophthalmology & visual science.

[233]  Robert F. Miller,et al.  Electrophysiological analysis of taurine and glycine action on neurons of the mudpuppy retina. I. Intracellular recording , 1980, Brain Research.

[234]  K. Ruddock,et al.  Hyperpolarization of retinal horizontal cells by excitatory amino acid neurotransmitter antagonists , 1982, Neuroscience Letters.

[235]  R. Marc Spatial organization of neurochemically classified interneurons of the goldfish retina—I. Local patterns , 1982, Vision Research.

[236]  J. Dowling,et al.  Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[237]  L. Heimer,et al.  A safer and more sensitive substitute for diamino-benzidine in the light microscopic demonstration of retrograde and anterograde axonal transport of HRP , 1977, Neuroscience Letters.

[238]  S. Bloomfield,et al.  Electroanatomy of a unique amacrine cell in the rabbit retina. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[239]  R. Marc,et al.  Horizontal cell synapses onto glycine-accumulating interplexiform cells , 1984, Nature.

[240]  H. Wässle,et al.  Pharmacological modulation of on and off ganglion cells in the cat retina , 1984, Neuroscience.

[241]  R. Roth,et al.  Serotonin-containing neuronal perikarya and terminals: differential effects of P-chlorophenylalanine. , 1973, Brain research.