The electronic and molecular structure of ferrocene

The metal–ligand distance in ferrocene has been calculated with several different electronic structure methods. The only correlation treatment able to reproduce the experimental value is the MCPF (modified coupled‐pair functional) approach with all 66 valence electrons correlated. Large basis sets are necessary to account for the dispersion interaction between the rings.

[1]  Hans Peter Lüthi,et al.  How well does the Hartree–Fock model predict equilibrium geometries of transition metal complexes? Large‐scale LCAO–SCF studies on ferrocene and decamethylferrocene , 1982 .

[2]  M. Hall,et al.  Problems in the theoretical structure of organometallic molecules: generalized molecular orbital, configuration interaction calculations on ferrocene , 1985 .

[3]  Per E. M. Siegbahn,et al.  The effect of electron correlation on the metal—ligand bond in ferrocene , 1984 .

[4]  R. Cimiraglia,et al.  Contracted and supercontracted basis sets in the theoretical treatment of coordination compounds: The cyclopentadienyl anion and ferrocene , 1988 .

[5]  Delano P. Chong,et al.  A modified coupled pair functional approach , 1986 .

[6]  A. Haaland,et al.  Organometallic compounds studied by gas-phase electron diffraction. , 1975, Topics in current chemistry.

[7]  W. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds. 3. STO‐3G basis sets for first‐ and second‐row transition metals , 1983 .

[8]  R. L. Williamson,et al.  Geometry optimization of organometallic complexes: A study of basis sets , 1987 .

[9]  F. U. Axe,et al.  Equilibrium geometries of transition metal complexes. A comparison of approximate molecular orbital theory and experiment , 1983 .

[10]  H. P. Luthi,et al.  An investigation of correlation effects in transition-metal sandwich complexes. Hartree-Fock studies on a series of metallocenes , 1984 .

[11]  N. Rösch,et al.  A linear combination of Gaussian‐type orbitals (LCGTO) Xα study of ferrocene: The metal‐to‐ring distance and ionization potentials , 1986 .

[12]  R. Raffenetti,et al.  General contraction of Gaussian atomic orbitals: Core, valence, polarization, and diffuse basis sets; Molecular integral evaluation , 1973 .

[13]  K. Hedberg,et al.  Molecular structure of di‐π‐cyclopentadienylcobalt, (C5H5)2Co, by gaseous electron diffraction , 1975 .

[14]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[15]  H. Lüth,et al.  The geometry and bonding of magnesocene. An AB-initio MO-LCAO investigation , 1983 .

[16]  J. Almlöf,et al.  Dual basis sets in calculations of electron correlation , 1991 .

[17]  Robert K. Bohn,et al.  On the molecular structure of ferrocene, Fe(C5H5)2 , 1966 .

[18]  T. Koetzle,et al.  A neutron diffraction study of the crystal structure of ferrocene , 1979 .

[19]  Svein Saebo,et al.  Avoiding the integral storage bottleneck in LCAO calculations of electron correlation , 1989 .

[20]  Hans Peter Lüthi,et al.  The metal to ring distance of ferrocene as determined by ab initio mo scf calculations , 1980 .