L p Error Estimates for Scattered Data Interpolation On Spheres

In this article, working with the sphere 𝕊 d embedded in the (d + 1)-dimensional Euclidean space ℝ d+1 as the underlying manifold, we obtain an error estimate for interpolating functions f ∈ H μ from shifts of a smooth positive definite function defined on 𝕊 d , where H μ is a Sobolev space. We also get an L p error estimate for f by using a method of Duchon framework.

[1]  Philip Crotwell Constructive Approximation on the Sphere , 2000 .

[2]  Jeremy Levesley,et al.  Approximation in rough native spaces by shifts of smooth kernels on spheres , 2005, J. Approx. Theory.

[3]  Holger Wendland,et al.  Direct and Inverse Sobolev Error Estimates for Scattered Data Interpolation via Spherical Basis Functions , 2007, Found. Comput. Math..

[4]  Jungho Yoon,et al.  Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..

[5]  Simon Hubbert,et al.  Lp-error estimates for radial basis function interpolation on the sphere , 2004, J. Approx. Theory.

[6]  L. Schumaker,et al.  Scattered data fitting on the sphere , 1998 .

[7]  Simon Hubbert,et al.  A Duchon framework for the sphere , 2004, J. Approx. Theory.

[8]  A. Ron,et al.  Strictly positive definite functions on spheres in Euclidean spaces , 1994, Math. Comput..

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  A. Ron,et al.  Strictly positive definite functions on spheres in Euclidean spaces , 1994, Math. Comput..

[11]  F. J. Narcowich,et al.  Variational Principles and Sobolev-Type Estimates for Generalized Interpolation on a Riemannian Manifold , 1999 .

[12]  E. Tronci,et al.  1996 , 1997, Affair of the Heart.

[13]  J. Levesleya,et al.  Corrigendum to and two open questions arising from the article “ Approximation in rough native spaces by shifts of smooth kernels on spheres ” [ J . Approx . Theory 133 ( 2005 ) 269 – 283 ] , 2006 .

[14]  Jeremy Levesley,et al.  Corrigendum to and two open questions arising from the article "Approximation in rough native spaces by shifts of smooth kernels on spheres": [J. Approx. Theory 133 (2005) 269-283] , 2006, J. Approx. Theory.

[15]  Xingping Sun,et al.  Approximation power of RBFs and their associated SBFs: a connection , 2007, Adv. Comput. Math..

[16]  Robert Schaback,et al.  Improved error bounds for scattered data interpolation by radial basis functions , 1999, Math. Comput..

[17]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[18]  Yuan Xu,et al.  Strictly positive definite functions on spheres , 1992 .

[19]  Robert Schaback,et al.  Approximation in Sobolev Spaces by Kernel Expansions , 2002, J. Approx. Theory.

[20]  Xingping Sun,et al.  Strictly positive definite functions on spheres in Euclidean spaces , 1996, Math. Comput..

[21]  L. Schumaker,et al.  Scattered Data Fitting on the Sphere Mathematical Methods for Curves and Surfaces Ii 117 , 1998 .

[22]  M. Golitschek,et al.  Interpolation by Polynomials and Radial Basis Functions on Spheres , 2000 .

[23]  Joseph D. Ward,et al.  Scattered Data Interpolation on Spheres: Error Estimates and Locally Supported Basis Functions , 2002, SIAM J. Math. Anal..

[24]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.