Exploring the Best Hyperspectral Features for LAI Estimation Using Partial Least Squares Regression

Abstract: The use of spectral features to estimate leaf area index (LAI) is generally considered a challenging task for hyperspectral data. In this study, the hyperspectral reflectance of winter wheat was se lected to optimize the selection of spectral features and to evaluate their performance in modeling LAI at various grow th stages during 2008 and 2009. We extracted hyperspectral featur es using different techniques, including reflectance spectra and first derivative spectra, absorption and reflectance position and vegetation indices. In order to find the best subset of features with the best predictive accuracy, partial least squares regression (PLSR) and variable importance in projection (VIP) were applied to estimated LAI values. The results indicated that the red edge–NIR spectral region (680 nm–1300 nm) was the most sensitive to LAI. Most features in this region exhibited a high correlation with LAI and had higher VIP values, especially the first derivative waveband at 750 nm (

[1]  Sheng Chen,et al.  Sparse modeling using orthogonal forward regression with PRESS statistic and regularization , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Elizabeth Pattey,et al.  Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance , 2002 .

[3]  A. Skidmore,et al.  Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions , 2004 .

[4]  A. Viña,et al.  Comparison of different vegetation indices for the remote assessment of green leaf area index of crops , 2011 .

[5]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[6]  A. Skidmore,et al.  Narrow band vegetation indices overcome the saturation problem in biomass estimation , 2004 .

[7]  M. Umeda,et al.  Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing , 2011 .

[8]  Ruiliang Pu,et al.  Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index , 2003, IEEE Trans. Geosci. Remote. Sens..

[9]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[10]  Byun-Woo Lee,et al.  Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression , 2006 .

[11]  Clement Atzberger,et al.  Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[12]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[13]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[14]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[15]  R. Clark,et al.  Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression , 1999 .

[16]  Armando Apan,et al.  Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery , 2004 .

[17]  W. Cohen,et al.  Hyperspectral versus multispectral data for estimating leaf area index in four different biomes , 2004 .

[18]  Didier Tanré,et al.  Atmospherically resistant vegetation index (ARVI) for EOS-MODIS , 1992, IEEE Trans. Geosci. Remote. Sens..

[19]  Clement Atzberger,et al.  LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .

[20]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[21]  A. J. Richardsons,et al.  DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION , 1977 .

[22]  J. Dash,et al.  The MERIS terrestrial chlorophyll index , 2004 .

[23]  L. Alonso,et al.  A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems , 2013 .

[24]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[25]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[26]  Ruiliang Pu,et al.  Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  A. Skidmore,et al.  Leaf Area Index derivation from hyperspectral vegetation indicesand the red edge position , 2009 .

[28]  A. K. Skidmore,et al.  Derivation of the red edge index using the MERIS standard band setting , 2002 .

[29]  A. Kaplan,et al.  A Beginner's Guide to Partial Least Squares Analysis , 2004 .

[30]  Wynne W. Chin The partial least squares approach for structural equation modeling. , 1998 .

[31]  W. Verstraeten,et al.  A near-infrared narrow-waveband ratio to determine Leaf Area Index in orchards , 2008 .

[32]  A. Huete,et al.  A feedback based modification of the NDVI to minimize canopy background and atmospheric noise , 1995 .

[33]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[34]  Jiaguo Qi,et al.  Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis , 2005 .

[35]  Fumin Wang,et al.  Optimal waveband identification for estimation of leaf area index of paddy rice , 2008, Journal of Zhejiang University SCIENCE B.

[36]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[37]  N. Breda Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. , 2003, Journal of experimental botany.

[38]  Jean-Pierre Gauchi,et al.  Selecting both latent and explanatory variables in the PLS1 regression model , 2003 .

[39]  N. Goel,et al.  Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation , 1994 .

[40]  Clement Atzberger,et al.  Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat , 2010 .

[41]  Josep Peñuelas,et al.  Cell wall elasticity and Water Index (R970 nm/R900 nm) in wheat under different nitrogen availabilities , 1996 .

[42]  P. Gong,et al.  Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia , 2002 .

[43]  I. Herrmann,et al.  LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands , 2011 .

[44]  N. Krishnayya,et al.  Canopy level estimations of chlorophyll and LAI for two tropical species (teak and bamboo) from Hyperion (EO1) data , 2013 .

[45]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[46]  J. Roujean,et al.  Estimating PAR absorbed by vegetation from bidirectional reflectance measurements , 1995 .

[47]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[48]  Onisimo Mutanga,et al.  Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[49]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[50]  Frédéric Baret,et al.  Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach , 2012 .

[51]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[52]  A. Skidmore,et al.  Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features , 2004 .

[53]  B. Turner,et al.  Estimating foliage nitrogen concentration from HYMAP data using continuum, removal analysis , 2004 .

[54]  I. Helland Partial least squares regression and statistical models , 1990 .

[55]  Onisimo Mutanga,et al.  Predicting plant water content in Eucalyptus grandis forest stands in KwaZulu-Natal, South Africa using field spectra resampled to the Sumbandila Satellite Sensor , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[56]  Fei Li,et al.  Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression , 2014 .

[57]  M. Hardisky The Influence of Soil Salinity, Growth Form, and Leaf Moisture on-the Spectral Radiance of Spartina alterniflora Canopies , 2008 .

[58]  B. Gao,et al.  Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data , 1995 .

[59]  A. Viña,et al.  Remote estimation of leaf area index and green leaf biomass in maize canopies , 2003 .

[60]  H. Abdi Partial Least Square Regression PLS-Regression , 2007 .

[61]  C. Jun,et al.  Performance of some variable selection methods when multicollinearity is present , 2005 .

[62]  A. Kuusk,et al.  Investigating relationships between Landsat ETM+ sensor data and leaf area index in a boreal conifer forest , 2001 .

[63]  J. Chen Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications , 1996 .

[64]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[65]  Hui Qing Liu,et al.  A feedback based modification of the NDVI to minimize canopy background and atmospheric noise , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[66]  Martha C. Anderson,et al.  A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery ☆ , 2004 .

[67]  Ruiliang Pu,et al.  Comparing Canonical Correlation Analysis with Partial Least Squares Regression in Estimating Forest Leaf Area Index with Multitemporal Landsat TM Imagery , 2012 .