Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration

A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling peptide scaffolds RADA16-I through direct coupling to short biologically active motifs. The motifs included osteogenic growth peptide ALK (ALKRQGRTLYGF) bone-cell secreted-signal peptide, osteopontin cell adhesion motif DGR (DGRGDSVAYG) and 2-unit RGD binding sequence PGR (PRGDSGYRGDS). We made the new peptide scaffolds by mixing the pure RAD16 and designer-peptide solutions, and we examined the molecular integration of the mixed nanofiber scaffolds using AFM. Compared to pure RAD16 scaffold, we found that these designer peptide scaffolds significantly promoted mouse pre-osteoblast MC3T3-E1 cell proliferation. Moreover, alkaline phosphatase (ALP) activity and osteocalcin secretion, which are early and late markers for osteoblastic differentiation, were also significantly increased. We demonstrated that the designer, self-assembling peptide scaffolds promoted the proliferation and osteogenic differentiation of MC3T3-E1. Under the identical culture medium condition, confocal images unequivocally demonstrated that the designer PRG peptide scaffold stimulated cell migration into the 3-D scaffold. Our results suggest that these designer peptide scaffolds may be very useful for promoting bone tissue regeneration.

[1]  Maria J. Troulis,et al.  Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone , 2006 .

[2]  Horst Kessler,et al.  Stereoisomeric Peptide Libraries and Peptidomimetics for Designing Selective Inhibitors of the αvβ3 Integrin for a New Cancer Therapy , 1997 .

[3]  R. Legge,et al.  Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV. , 2003, Biomacromolecules.

[4]  Eli Weinberg,et al.  Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone. , 2006, Bone.

[5]  A. Rich,et al.  Self-complementary oligopeptide matrices support mammalian cell attachment. , 1995, Biomaterials.

[6]  D. Hutmacher,et al.  Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. , 2003, Tissue engineering.

[7]  B. Nies,et al.  Surface Coating with Cyclic RGD Peptides Stimulates Osteoblast Adhesion and Proliferation as well as Bone Formation , 2000, Chembiochem : a European journal of chemical biology.

[8]  A. Mikos,et al.  Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. , 2004, Journal of biomedical materials research. Part A.

[9]  Mina J Bissell,et al.  The organizing principle: microenvironmental influences in the normal and malignant breast. , 2002, Differentiation; research in biological diversity.

[10]  M. Namdar,et al.  Histone H4‐related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. , 1992, The EMBO journal.

[11]  A. J. Grodzinsky,et al.  Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Goodman,et al.  Structural and Functional Aspects of RGD-Containing Cyclic Pentapeptides as Highly Potent and Selective Integrin αVβ3 Antagonists , 1996 .

[13]  Fabrizio Gelain,et al.  Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures , 2006, PloS one.

[14]  A. Mikos,et al.  Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. , 2004, Biomaterials.

[15]  T. Yoneda,et al.  A Synthetic Peptide Fragment of Human MEPE Stimulates New Bone Formation In Vitro and In Vivo , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[16]  Antonios G Mikos,et al.  Biomimetic materials for tissue engineering. , 2003, Biomaterials.

[17]  T. Kreis,et al.  Guidebook to the extracellular matrix, anchor, and adhesion proteins , 1999 .

[18]  M. Chorev,et al.  Bioactive pseudopeptidic analogues and cyclostereoisomers of osteogenic growth peptide C-terminal pentapeptide, OGP(10-14). , 2002, Journal of medicinal chemistry.

[19]  Shuguang Zhang,et al.  PuraMatrix: Self-Assembling Peptide Nanofiber Scaffolds , 2005 .

[20]  K E Healy,et al.  Biomimetic Peptide Surfaces That Regulate Adhesion, Spreading, Cytoskeletal Organization, and Mineralization of the Matrix Deposited by Osteoblast‐like Cells , 1999, Biotechnology progress.

[21]  A. Conte,et al.  Bone and bone-marrow interactions: haematological activity of osteoblastic growth peptide (OGP)-derived carboxy-terminal pentapeptide. Mobilizing properties on white blood cells and peripheral blood stem cells in mice. , 2002, Leukemia research.

[22]  Seeram Ramakrishna,et al.  Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[23]  Richard T. Lee,et al.  Injectable Self-Assembling Peptide Nanofibers Create Intramyocardial Microenvironments for Endothelial Cells , 2005, Circulation.

[24]  Song Li,et al.  Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels. , 2003, Biochemical and biophysical research communications.

[25]  Hisatoshi Kobayashi,et al.  Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. , 2006, Biomaterials.

[26]  Peter X. Ma,et al.  Scaffolding In Tissue Engineering , 2005 .

[27]  Krista L. Niece,et al.  Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers , 2004, Science.

[28]  I. Reid,et al.  Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. , 1998, American journal of physiology. Endocrinology and metabolism.

[29]  C Krettek,et al.  Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. , 2003, Biomaterials.

[30]  A. Mikos,et al.  Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethyleneglycol) spacer. , 2002, Journal of biomedical materials research.

[31]  George M. Whitesides,et al.  Using Mixed Self-Assembled Monolayers Presenting RGD and (EG)3OH Groups To Characterize Long-Term Attachment of Bovine Capillary Endothelial Cells to Surfaces , 1998 .

[32]  K W Anderson,et al.  Cell-interactive Alginate Hydrogels for Bone Tissue Engineering , 2001, Journal of dental research.

[33]  A. Rich,et al.  Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Galip Akay,et al.  The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material. , 2005, Biomaterials.