A Construction of General QAM Golay Complementary Sequences

A construction of general quadrature amplitude modulation (QAM) Golay complementary sequences based on quadrature phase shift keying Golay-Davis-Jedwab sequences (GDJ sequences) is described. Existing constructions of 16- and 64-QAM Golay sequences are extended to 4<sup>q</sup>-QAM sequences of length 2<sup>m</sup>, for q ≥ 1, m ≥ 2. This construction gives [(m + 1)4<sup>2(q - 1)</sup> - (m + 1)4<sup>(q - 1)</sup> + 2<sup>q - 1</sup>](m! / 2)4<sup>(m + 1)</sup> Golay complementary sequences. A previous offset pair enumeration conjecture for 64-QAM Golay sequences is proved as a special case of the enumeration for 4q-QAM Golay sequences. When used for orthogonal frequency-division multiplexing signals, the peak-to-mean envelope power ratio upper bound is shown to be 6(2<sup>q</sup> - 1)/ (2<sup>q</sup> + 1), approaching 6 as the QAM constellation size increases.

[1]  Ying Li Comments on "A New Construction of 16-QAM Golay Complementary Sequences" and Extension for 64-QAM Golay Sequences , 2008, IEEE Trans. Inf. Theory.

[2]  Ying Li On the Construction of 64-QAM Golay Complementary Sequences , 2007, 2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks.

[3]  J. Jedwab,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[4]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[5]  Matthew G. Parker,et al.  A multi-dimensional approach to the construction and enumeration of Golay complementary sequences , 2008, J. Comb. Theory, Ser. A.

[6]  J. Jedwab,et al.  A Framework for the Construction of Golay Sequences , 2008 .

[7]  Ying Li,et al.  New QAM Golay complementary pairs with unequal sequence power , 2009, 2009 IEEE International Symposium on Information Theory.

[8]  Vahid Tarokh,et al.  A new construction of 16-QAM Golay complementary sequences , 2003, IEEE Trans. Inf. Theory.

[9]  Ying Li,et al.  Structures of non-GDJ golay sequences , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[10]  Kai-Uwe Schmidt,et al.  On cosets of the generalized first-order reed-muller code with low PMEPR , 2006, IEEE Transactions on Information Theory.

[11]  Ying Li,et al.  More Golay sequences , 2005, IEEE Trans. Inf. Theory.

[12]  Jonathan Jedwab,et al.  How Do More Golay Sequences Arise? , 2006, IEEE Transactions on Information Theory.

[13]  Kenneth G. Paterson,et al.  Generalized Reed-Muller codes and power control in OFDM modulation , 1998, IEEE Trans. Inf. Theory.

[14]  Ying Li,et al.  New 64-QAM Golay Complementary Sequences , 2010, IEEE Transactions on Information Theory.

[15]  Solomon W. Golomb,et al.  A new construction of 64-QAM golay complementary sequences , 2006, IEEE Transactions on Information Theory.