WNT/β‐catenin pathway is a key regulator of cardiac function and energetic metabolism

The WNT/β‐catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β‐catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β‐catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β‐catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β‐catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β‐catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.

[1]  Feng Wu,et al.  Empagliflozin activates Wnt/β-catenin to stimulate FUNDC1-dependent mitochondrial quality surveillance against type-3 cardiorenal syndrome , 2022, Molecular metabolism.

[2]  B. Faubert,et al.  Compartmentalized metabolism supports midgestation mammalian development , 2022, Nature.

[3]  K. Shah,et al.  Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling , 2022, Frontiers in Oncology.

[4]  Yuzhu Luo,et al.  Changes in the Mitochondrial Dynamics and Functions Together with the mRNA/miRNA Network in the Heart Tissue Contribute to Hypoxia Adaptation in Tibetan Sheep , 2022, Animals : an open access journal from MDPI.

[5]  R. Nusse,et al.  The Wnt Pathway: From Signaling Mechanisms to Synthetic Modulators. , 2022, Annual review of biochemistry.

[6]  M. Abdellatif,et al.  YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload , 2022, The Journal of clinical investigation.

[7]  Zhongming Zhao,et al.  The WNT/β-catenin pathway regulates expression of the genes involved in cell cycle progression and mitochondrial oxidative phosphorylation in the postmitotic cardiac myocytes , 2022, The journal of cardiovascular aging.

[8]  N. Hou,et al.  Methazolamide Attenuates the Development of Diabetic Cardiomyopathy by Promoting β-Catenin Degradation in Type 1 Diabetic Mice. , 2022, Diabetes.

[9]  Tatsuya Sato,et al.  Enhanced glucose metabolism through activation of HIF-1α covers the energy demand in a rat embryonic heart primordium after heartbeat initiation , 2022, Scientific reports.

[10]  Jong-Sun Kang,et al.  PRMT7 ablation in cardiomyocytes causes cardiac hypertrophy and fibrosis through β-catenin dysregulation , 2021, Cellular and Molecular Life Sciences.

[11]  X. Guo,et al.  Palmitate impairs the autophagic flux to induce p62-dependent apoptosis through the upregulation of CYLD in NRCMs. , 2021, Toxicology.

[12]  L. del Bosque-Plata,et al.  The broad pathogenetic role of TCF7L2 in human diseases beyond type 2 diabetes , 2021, Journal of cellular physiology.

[13]  R. Beanlands,et al.  Cardiomyocyte-specific deletion of β-catenin protects mouse hearts from ventricular arrhythmias after myocardial infarction , 2021, Scientific Reports.

[14]  J. Woodgett,et al.  Cardiomyocyte GSK-3β deficiency induces cardiac progenitor cell proliferation in the ischemic heart through paracrine mechanisms , 2021, bioRxiv.

[15]  S. Guettler,et al.  Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubiquitylation , 2021, Molecular cell.

[16]  P. Dobrzyn,et al.  Cardiac-specific β-catenin deletion dysregulates energetic metabolism and mitochondrial function in perinatal cardiomyocytes. , 2021, Mitochondrion.

[17]  P. Shepherd,et al.  β‐Catenin is required for optimal exercise‐ and contraction‐stimulated skeletal muscle glucose uptake , 2021, The Journal of physiology.

[18]  B. Staels,et al.  PPAR control of metabolism and cardiovascular functions , 2021, Nature Reviews Cardiology.

[19]  R. Tian,et al.  Cardiac Energy Metabolism in Heart Failure , 2021, Circulation research.

[20]  Youhua Liu,et al.  LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence , 2021, Frontiers in Cell and Developmental Biology.

[21]  Kirti Gupta,et al.  Wnt/β-Catenin Antagonist Pyrvinium Exerts Cardioprotective Effects in Polymicrobial Sepsis Model by Attenuating Calcium Dyshomeostasis and Mitochondrial Dysfunction , 2021, Cardiovascular Toxicology.

[22]  Hong Yang,et al.  Pyrvinium Treatment Confers Hepatic Metabolic Benefits via β-catenin Downregulation and AMPK Activation , 2021, Pharmaceutics.

[23]  P. Zhu,et al.  Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism. , 2021, American journal of physiology. Heart and circulatory physiology.

[24]  Emil Spreitzer,et al.  Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. , 2020, Cell reports.

[25]  P. Dobrzyn,et al.  β-Catenin Regulates Cardiac Energy Metabolism in Sedentary and Trained Mice , 2020, Life.

[26]  R. van Amerongen,et al.  Walking the tight wire between cell adhesion and WNT signalling: a balancing act for β-catenin , 2020, Open Biology.

[27]  D. Elliott,et al.  β-Catenin drives distinct transcriptional networks in proliferative and nonproliferative cardiomyocytes , 2020, Development.

[28]  T. Arimoto,et al.  HECT (Homologous to the E6-AP Carboxyl Terminus)-Type Ubiquitin E3 Ligase ITCH Attenuates Cardiac Hypertrophy by Suppressing the Wnt/β-Catenin Signaling Pathway , 2020, Hypertension.

[29]  Kang-Yell Choi,et al.  APC loss induces Warburg effect via increased PKM2 transcription in colorectal cancer , 2020, British Journal of Cancer.

[30]  P. Shepherd,et al.  β-catenin regulates muscle glucose transport via actin remodelling and M-cadherin binding , 2020, Molecular metabolism.

[31]  Hongzhu Li,et al.  Spermine Protects Cardiomyocytes from High Glucose-Induced Energy Disturbance by Targeting the CaSR-gp78-Ubiquitin Proteasome System , 2020, Cardiovascular Drugs and Therapy.

[32]  Ethan Lee,et al.  Nuclear Regulation of Wnt/β-Catenin Signaling: It’s a Complex Situation , 2020, Genes.

[33]  Mark Agostino,et al.  The structural biology of canonical Wnt signalling , 2020, Biochemical Society transactions.

[34]  L. Ren,et al.  β-catenin mediates the effect of GLP-1 receptor agonist on ameliorating hepatic steatosis induced by high fructose diet , 2020, European journal of histochemistry : EJH.

[35]  James B. Hu,et al.  Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. , 2020, Cell stem cell.

[36]  A. Theiss,et al.  The influence of mitochondrial-directed regulation of Wnt signaling on tumorigenesis , 2020, Gastroenterology report.

[37]  Lei Shi,et al.  Ube2s-stabilized β-catenin protects against myocardial ischemia/reperfusion injury by activating HIF-1α signaling , 2020, Aging.

[38]  S. S. Koh,et al.  Phosphofructokinase 1 Platelet Isoform Promotes β-Catenin Transactivation for Tumor Development , 2020, Frontiers in Oncology.

[39]  K. Chien,et al.  Genome‐wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors , 2020, Stem cells.

[40]  Chenhuan Yu,et al.  LncRNA TUG1 alleviates cardiac hypertrophy by targeting miR‐34a/DKK1/Wnt‐β‐catenin signalling , 2020, Journal of cellular and molecular medicine.

[41]  M. Mayr,et al.  Pkm2 Regulates Cardiomyocyte Cell Cycle and Promotes Cardiac Regeneration , 2020, Circulation.

[42]  Y. Mu,et al.  Inhibition of NF-κB and Wnt/β-catenin/GSK3β Signaling Pathways Ameliorates Cardiomyocyte Hypertrophy and Fibrosis in Streptozotocin (STZ)-induced Type 1 Diabetic Rats , 2020, Current Medical Science.

[43]  S. Oka,et al.  Multiple Levels of PGC-1α Dysregulation in Heart Failure , 2020, Frontiers in Cardiovascular Medicine.

[44]  M. Taketo,et al.  Tubular β-catenin and FoxO3 interactions protect in chronic kidney disease , 2020 .

[45]  K. Chien,et al.  Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. , 2019, Seminars in cell & developmental biology.

[46]  J. Zierath,et al.  Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism , 2019, American journal of physiology. Cell physiology.

[47]  Anita Saraf,et al.  Mitochondrial dysfunction and oxidative stress in heart disease , 2019, Experimental & Molecular Medicine.

[48]  Yun-Wei A Hsu,et al.  Metabolic Remodeling Promotes Cardiac Hypertrophy by Directing Glucose to Aspartate Biosynthesis , 2019, Circulation research.

[49]  Jie Yan,et al.  Phosphorylation Reduces the Mechanical Stability of the α‐Catenin/ β‐Catenin Complex , 2019, Angewandte Chemie.

[50]  G. Hasenfuss,et al.  KLF15-Wnt-Dependent Cardiac Reprogramming Up-Regulates SHISA3 in the Mammalian Heart. , 2019, Journal of the American College of Cardiology.

[51]  Hao-dong Xu,et al.  A small-molecule LF3 abrogates β-catenin/TCF4-mediated suppression of NaV1.5 expression in HL-1 cardiomyocytes. , 2019, Journal of molecular and cellular cardiology.

[52]  A. Dobrzyń,et al.  Oleic acid increases the transcriptional activity of FoxO1 by promoting its nuclear translocation and β-catenin binding in pancreatic β-cells. , 2019, Biochimica et biophysica acta. Molecular basis of disease.

[53]  Elie N. Farah,et al.  Canonical Wnt5b Signaling Directs Outlying Nkx2.5+ Mesoderm into Pacemaker Cardiomyocytes. , 2019, Developmental cell.

[54]  M. Civelek,et al.  Dual PPARα/γ activation inhibitsSIRT1-PGC1α axis and causes cardiac dysfunction , 2019, JCI Insight.

[55]  Qiang Han,et al.  Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish , 2019, Cells.

[56]  L. Scorrano,et al.  Impaired Mitochondrial ATP Production Downregulates Wnt Signaling via ER Stress Induction. , 2019, Cell reports.

[57]  T. Evans,et al.  TMEM88 Inhibits Wnt Signaling by Promoting Wnt Signalosome Localization to Multivesicular Bodies , 2019, iScience.

[58]  G. Basso,et al.  HIF-1α/Wnt signaling-dependent control of gene transcription regulates neuronal differentiation of glioblastoma stem cells , 2019, Theranostics.

[59]  A. Shilatifard,et al.  β-Catenin/Tcf7l2–dependent transcriptional regulation of GLUT1 gene expression by Zic family proteins in colon cancer , 2019, Science Advances.

[60]  K. Jiao,et al.  Complex Regulation of Mitochondrial Function During Cardiac Development , 2019, Journal of the American Heart Association.

[61]  Peiqing Liu,et al.  Dkk1 exacerbates doxorubicin-induced cardiotoxicity by inhibiting the Wnt/β-catenin signaling pathway , 2019, Journal of Cell Science.

[62]  Jun Zhou,et al.  Reciprocal Regulation Between O-GlcNAcylation and β-Catenin Facilitates Cell Viability and Inhibits Apoptosis in Liver Cancer. , 2019, DNA and cell biology.

[63]  Yaqi Gu,et al.  GSK-3β at the Crossroads in Regulating Protein Synthesis and Lipid Deposition in Zebrafish , 2019, Cells.

[64]  Hao-dong Xu,et al.  Opposing Roles of Tcf7/Lef1 and Tcf7l2 in Cyclin D2 and Bmp4 Expression and Cardiomyocyte Cell Cycle Control during Late Heart Development , 2019, Laboratory Investigation.

[65]  Chi Wang,et al.  The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer , 2019, Cell Death & Differentiation.

[66]  E. Abel,et al.  Heart Failure in Type 2 Diabetes Mellitus. , 2019, Circulation research.

[67]  C. Yuh,et al.  Ribose-5-phosphate isomerase A overexpression promotes liver cancer development in transgenic zebrafish via activation of ERK and β-catenin pathways , 2018, Carcinogenesis.

[68]  B. Soh,et al.  Wnt/β-catenin-mediated signaling re-activates proliferation of matured cardiomyocytes , 2018, Stem Cell Research & Therapy.

[69]  Fei Xu,et al.  Structural and Druggability Landscape of Frizzled G Protein-Coupled Receptors. , 2018, Trends in biochemical sciences.

[70]  X. Prieur,et al.  Chronic O-GlcNAcylation and Diabetic Cardiomyopathy: The Bitterness of Glucose , 2018, Front. Endocrinol..

[71]  J. L. de la Pompa,et al.  Notch and interacting signalling pathways in cardiac development, disease, and regeneration , 2018, Nature Reviews Cardiology.

[72]  Ying-ying Chen,et al.  Hyperglycemia Altered the Fate of Cardiac Stem Cells to Adipogenesis through Inhibiting the β-Catenin/TCF-4 Pathway , 2018, Cellular Physiology and Biochemistry.

[73]  Ji-qiu Wang,et al.  Wnt/β-Catenin Signaling and Obesity , 2018, Front. Physiol..

[74]  Jianjun Liu,et al.  GSK-3β inhibition confers cardioprotection associated with the restoration of mitochondrial function and suppression of endoplasmic reticulum stress in sevoflurane preconditioned rats following ischemia/reperfusion injury , 2018, Perfusion.

[75]  P. Dobrzyn,et al.  Cardiospecific deletion of αE-catenin leads to heart failure and lethality in mice , 2018, Pflügers Archiv - European Journal of Physiology.

[76]  Youhua Liu,et al.  An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease , 2018, Scientific Reports.

[77]  Shu-yu Yang,et al.  Chibby suppresses aerobic glycolysis and proliferation of nasopharyngeal carcinoma via the Wnt/β-catenin-Lin28/let7-PDK1 cascade , 2018, Journal of experimental & clinical cancer research : CR.

[78]  R. Moon,et al.  ALPK2 Promotes Cardiogenesis in Zebrafish and Human Pluripotent Stem Cells , 2018, iScience.

[79]  D. Egan,et al.  TMEM59 potentiates Wnt signaling by promoting signalosome formation , 2018, Proceedings of the National Academy of Sciences.

[80]  D. J. McKay,et al.  Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo , 2018, PLoS genetics.

[81]  M. Gammons,et al.  Multiprotein complexes governing Wnt signal transduction. , 2018, Current opinion in cell biology.

[82]  Amirhossein Sahebkar,et al.  The novel role of pyrvinium in cancer therapy , 2018, Journal of cellular physiology.

[83]  G. Lopaschuk,et al.  Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction , 2018, Molecular medicine.

[84]  Yarong Song,et al.  AMPK/GSK3β/β‐catenin cascade‐triggered overexpression of CEMIP promotes migration and invasion in anoikis‐resistant prostate cancer cells by enhancing metabolic reprogramming , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[85]  I. Khalaila,et al.  O‐GlcNAcylation affects &bgr;‐catenin and E‐cadherin expression, cell motility and tumorigenicity of colorectal cancer , 2018, Experimental cell research.

[86]  L. Zelarayán,et al.  The Mingle-Mangle of Wnt Signaling and Extracellular Vesicles: Functional Implications for Heart Research , 2018, Front. Cardiovasc. Med..

[87]  J. Bakkers,et al.  Spatially resolved RNA-sequencing of the embryonic heart identifies a role for Wnt/β-catenin signaling in autonomic control of heart rate , 2018, eLife.

[88]  K. Cadigan,et al.  The Wnt Transcriptional Switch: TLE Removal or Inactivation? , 2018, BioEssays : news and reviews in molecular, cellular and developmental biology.

[89]  G. Hasenfuss,et al.  A context-specific cardiac β-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart , 2018, Nucleic acids research.

[90]  M. Taketo,et al.  Hepatocyte specific expression of an oncogenic variant of β-catenin results in lethal metabolic dysfunction in mice , 2018, Oncotarget.

[91]  K. Basler,et al.  Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling , 2018, bioRxiv.

[92]  C. Yuh,et al.  Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain , 2018, PLoS biology.

[93]  H. Aburatani,et al.  Discovery of a Small Molecule to Increase Cardiomyocytes and Protect the Heart After Ischemic Injury , 2018, JACC. Basic to translational science.

[94]  V. Balatskyi,et al.  Cardiospecific knockout of αE-catenin leads to violation of the neonatal cardiomyocytes maturation via β-catenin and Yap signaling , 2018 .

[95]  M. Wolfgang,et al.  &bgr;-Catenin Directs Long-Chain Fatty Acid Catabolism in the Osteoblasts of Male Mice , 2018, Endocrinology.

[96]  Peng Liu,et al.  Activation of nuclear β-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. , 2017, Biochemical and biophysical research communications.

[97]  J. Abreu,et al.  Complexity of the Wnt/β‑catenin pathway: Searching for an activation model. , 2017, Cellular signalling.

[98]  M. Pellegrini,et al.  Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis , 2017, eLife.

[99]  Daming Liu,et al.  Epigenetic silencing of miR-338 facilitates glioblastoma progression by de-repressing the pyruvate kinase M2-β-catenin axis , 2017, Aging.

[100]  M. Bienz,et al.  Wnt-Dependent Inactivation of the Groucho/TLE Co-repressor by the HECT E3 Ubiquitin Ligase Hyd/UBR5 , 2017, Molecular cell.

[101]  R. Nusse,et al.  Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities , 2017, Cell.

[102]  B. Roy,et al.  Altered Mitochondrial Signalling and Metabolism in Cancer , 2017, Front. Oncol..

[103]  M. Bienz,et al.  Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/BCL9 , 2017, eLife.

[104]  G. Filippatos,et al.  Mitochondrial function as a therapeutic target in heart failure , 2016, Nature Reviews Cardiology.

[105]  Diana C. Canseco,et al.  Hypoxia induces heart regeneration in adult mice , 2016, Nature.

[106]  J. McMullen,et al.  The IGF1-PI3K-Akt Signaling Pathway in Mediating Exercise-Induced Cardiac Hypertrophy and Protection. , 2017, Advances in experimental medicine and biology.

[107]  Ray-Jade Chen,et al.  Enhancement of beta-catenin in cardiomyocytes suppresses survival protein expression but promotes apoptosis and fibrosis. , 2017, Cardiology journal.

[108]  C. Jiang,et al.  Fibroblast growth factor 9 subfamily and the heart , 2017, Applied Microbiology and Biotechnology.

[109]  J. L. Izquierdo-García,et al.  Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation. , 2016, Developmental cell.

[110]  W. E. Hughes,et al.  A Critical Role for β-Catenin in Modulating Levels of Insulin Secretion from β-Cells by Regulating Actin Cytoskeleton and Insulin Vesicle Localization* , 2016, The Journal of Biological Chemistry.

[111]  M. Gammons,et al.  Wnt Signalosome Assembly by DEP Domain Swapping of Dishevelled , 2016, Molecular cell.

[112]  R. Nusse,et al.  Generating Cellular Diversity and Spatial Form: Wnt Signaling and the Evolution of Multicellular Animals. , 2016, Developmental cell.

[113]  S. Hashemolhosseini,et al.  Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers , 2016, Development.

[114]  Jinfen Liu,et al.  GSK-3&bgr; Inhibitor CHIR-99021 Promotes Proliferation Through Upregulating &bgr;-Catenin in Neonatal Atrial Human Cardiomyocytes , 2016, Journal of cardiovascular pharmacology.

[115]  F. Scaglia,et al.  Mitochondrial Cardiomyopathies , 2016, Front. Cardiovasc. Med..

[116]  N. Z. Zur Nieden,et al.  Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/β-Catenin-Dependent Transcription of p21cip1 , 2016, Stem cell reports.

[117]  L. Maves,et al.  Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease , 2016, Wiley interdisciplinary reviews. Developmental biology.

[118]  Hao-dong Xu,et al.  Activation of Wnt/β-catenin signaling by hydrogen peroxide transcriptionally inhibits NaV1.5 expression. , 2016, Free radical biology & medicine.

[119]  O. Vašíček,et al.  HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells , 2016, PloS one.

[120]  K. Margulies,et al.  Transcription Factor 7-like 2 Mediates Canonical Wnt/&bgr;-Catenin Signaling and c-Myc Upregulation in Heart Failure , 2016, Circulation. Heart failure.

[121]  F. Takahashi‐Yanaga,et al.  GSK-3β heterozygous knockout is cardioprotective in a knockin mouse model of familial dilated cardiomyopathy. , 2016, American journal of physiology. Heart and circulatory physiology.

[122]  Jennifer L. Harris,et al.  Temporary, Systemic Inhibition of the WNT/β-Catenin Pathway promotes Regenerative Cardiac Repair following Myocardial Infarct. , 2016, Cell, stem cells and regenerative medicine.

[123]  C. Nguyên,et al.  p300/β-Catenin Interactions Regulate Adult Progenitor Cell Differentiation Downstream of WNT5a/Protein Kinase C (PKC)* , 2016, The Journal of Biological Chemistry.

[124]  I. Rhyu,et al.  Axin is expressed in mitochondria and suppresses mitochondrial ATP synthesis in HeLa cells. , 2016, Experimental cell research.

[125]  Hao-dong Xu,et al.  APC controls asymmetric Wnt/β-catenin signaling and cardiomyocyte proliferation gradient in the heart. , 2015, Journal of molecular and cellular cardiology.

[126]  Xiaosong Ma,et al.  GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/b-catenin pathway , 2015, Journal of molecular endocrinology.

[127]  Zhao Zhong (兆忠) Chong (种),et al.  Activation of Wnt/β-catenin/GSK3β signaling during the development of diabetic cardiomyopathy. , 2015, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.

[128]  R. Bamezai,et al.  Moderate DNA damage promotes metabolic flux into PPP via PKM2 Y-105 phosphorylation: a feature that favours cancer cells , 2015, Molecular Biology Reports.

[129]  C. Farber,et al.  Wnt-Lrp5 Signaling Regulates Fatty Acid Metabolism in the Osteoblast , 2015, Molecular and Cellular Biology.

[130]  Eduardo Marbán,et al.  Wnt signalling suppresses voltage‐dependent Na+ channel expression in postnatal rat cardiomyocytes , 2015, The Journal of physiology.

[131]  B. Hemmings,et al.  Akt1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development , 2015, Development.

[132]  A. Durán,et al.  Repression of Intestinal Stem Cell Function and Tumorigenesis through Direct Phosphorylation of β-Catenin and Yap by PKCζ. , 2015, Cell reports.

[133]  T. Zwaka,et al.  Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. , 2015, Developmental biology.

[134]  T. Braun,et al.  Attenuation of Wnt/β-catenin activity reverses enhanced generation of cardiomyocytes and cardiac defects caused by the loss of emerin. , 2015, Human molecular genetics.

[135]  I. Efimov,et al.  Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties , 2015, Circulation research.

[136]  T. Jin,et al.  Liver-Specific Expression of Dominant-Negative Transcription Factor 7-Like 2 Causes Progressive Impairment in Glucose Homeostasis , 2015, Diabetes.

[137]  K. Aldape,et al.  Tumour suppressor TRIM33 targets nuclear β-catenin degradation , 2014, Nature Communications.

[138]  Sheng-jiao Li,et al.  Antitumor effects of WNT 2 B silencing in GLUT 1 overexpressing cisplatin resistant head and neck squamous cell carcinoma , 2015 .

[139]  K. Chien,et al.  How to make a cardiomyocyte , 2014, Development.

[140]  Pierre Baldi,et al.  The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition , 2014, Nucleic acids research.

[141]  Ping Chen,et al.  Autophagy eliminates cytoplasmic β-catenin and NICD to promote the cardiac differentiation of P19CL6 cells. , 2014, Cellular signalling.

[142]  A. Moorman,et al.  Heart fields and cardiac morphogenesis. , 2014, Cold Spring Harbor perspectives in medicine.

[143]  J. Ge,et al.  Insulin‐Like Growth Factor Binding Protein 4 Enhances Cardiomyocytes Induction in Murine‐Induced Pluripotent Stem Cells , 2014, Journal of cellular biochemistry.

[144]  M. Copin,et al.  O‐GlcNAcylation stabilizes β‐catenin through direct competition with phosphorylation at threonine 41 , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[145]  Giuseppe Basso,et al.  YAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response , 2014, Cell.

[146]  E. Gratton,et al.  Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer , 2014, The EMBO journal.

[147]  P. Veber,et al.  T‐cell factor 4 and β‐catenin chromatin occupancies pattern zonal liver metabolism in mice , 2014, Hepatology.

[148]  G. Radice,et al.  N-Cadherin/Catenin Complex as a Master Regulator of Intercalated Disc Function , 2014, Cell communication & adhesion.

[149]  C. Niehrs,et al.  Polarized Wnt signaling regulates ectodermal cell fate in Xenopus. , 2014, Developmental cell.

[150]  M. Klüppel,et al.  Biphasic Role of Chondroitin Sulfate in Cardiac Differentiation of Embryonic Stem Cells through Inhibition of Wnt/β-Catenin Signaling , 2014, PloS one.

[151]  Jiliang Zhou An emerging role for Hippo-YAP signaling in cardiovascular development , 2014, Journal of biomedical research.

[152]  C. Weber,et al.  β-Catenin-dependent pathway activation by both promiscuous "canonical" WNT3a-, and specific "noncanonical" WNT4- and WNT5a-FZD receptor combinations with strong differences in LRP5 and LRP6 dependency. , 2014, Cellular signalling.

[153]  H. Sucov,et al.  Nkx 2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin 3 , 2014 .

[154]  Milena B. Furtado,et al.  Effect of Oxygen on Cardiac Differentiation in Mouse iPS Cells: Role of Hypoxia Inducible Factor-1 and Wnt/Beta-Catenin Signaling , 2013, PloS one.

[155]  D. McDonald,et al.  Identification of pY654-β-catenin as a critical co-factor in hypoxia-inducible factor-1α signaling and tumor responses to hypoxia , 2013, Oncogene.

[156]  P. Doevendans,et al.  Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes , 2013, Development.

[157]  K. Chien,et al.  Embryonic heart progenitors and cardiogenesis. , 2013, Cold Spring Harbor perspectives in medicine.

[158]  B. Hadland,et al.  Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development , 2013, Development.

[159]  T. Evans,et al.  Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling , 2013, Development.

[160]  Ping Chen,et al.  Expression and redistribution of β-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat , 2013, Journal of Molecular Histology.

[161]  J. Mesirov,et al.  β-Catenin-Driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis , 2013, Cell.

[162]  J. Dyck,et al.  AMPK signalling and the control of substrate use in the heart , 2013, Molecular and Cellular Endocrinology.

[163]  R. Malekzadeh,et al.  LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans. , 2013, Cell metabolism.

[164]  P. Shepherd,et al.  Identification of a pathway by which glucose regulates β-catenin signalling via the cAMP/protein kinase A pathway in β-cell models. , 2013, The Biochemical journal.

[165]  W. Zimmermann,et al.  The Four and a Half LIM-Domain 2 Controls Early Cardiac Cell Commitment and Expansion Via Regulating β-Catenin-Dependent Transcription , 2013, Stem cells.

[166]  S. Lockett,et al.  Cripto-1 enhances the canonical Wnt/β-catenin signaling pathway by binding to LRP5 and LRP6 co-receptors. , 2013, Cellular signalling.

[167]  W. Weis,et al.  The β-catenin destruction complex. , 2013, Cold Spring Harbor perspectives in biology.

[168]  T. Jin,et al.  P21-activated protein kinase 1 (Pak1) mediates the cross talk between insulin and β-catenin on proglucagon gene expression and its ablation affects glucose homeostasis in male C57BL/6 mice. , 2013, Endocrinology.

[169]  Xi He,et al.  Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. , 2012, Cold Spring Harbor perspectives in biology.

[170]  C. Niehrs The complex world of WNT receptor signalling , 2012, Nature Reviews Molecular Cell Biology.

[171]  S. Al-Salam,et al.  Hypoxia-Inducible Factor-1 Alpha in the Heart: A Double Agent? , 2012, Cardiology in review.

[172]  M. Waterman,et al.  TCF/LEFs and Wnt signaling in the nucleus. , 2012, Cold Spring Harbor perspectives in biology.

[173]  J. Willmann,et al.  β-Catenin regulates hepatic mitochondrial function and energy balance in mice. , 2012, Gastroenterology.

[174]  R. Dietz,et al.  Krueppel-like factor 15 regulates Wnt/β-catenin transcription and controls cardiac progenitor cell fate in the postnatal heart , 2012, EMBO molecular medicine.

[175]  W. Birchmeier,et al.  Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells , 2012, Proceedings of the National Academy of Sciences.

[176]  R. Moon,et al.  Development and Stem Cells Research Article 1931 , 2022 .

[177]  Lukas Balek,et al.  Receptor Tyrosine Kinases Activate Canonical WNT/β-Catenin Signaling via MAP Kinase/LRP6 Pathway and Direct β-Catenin Phosphorylation , 2012, PloS one.

[178]  Joseph A. Hill,et al.  Reactive Oxygen Species Suppress Cardiac NaV1.5 Expression through Foxo1 , 2012, PloS one.

[179]  Baiqu Huang,et al.  A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells , 2012, Oncogene.

[180]  Jian Zhang,et al.  Nucleo-cytoplasmic shuttling of PAK4 modulates β-catenin intracellular translocation and signaling. , 2012, Biochimica et biophysica acta.

[181]  Ping Chen,et al.  Interaction of Wnt/β‐catenin and notch signaling in the early stage of cardiac differentiation of P19CL6 cells , 2012, Journal of cellular biochemistry.

[182]  A. Marian,et al.  Nuclear Plakoglobin Is Essential for Differentiation of Cardiac Progenitor Cells to Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy , 2011, Circulation research.

[183]  K. Aldape,et al.  Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation , 2011, Nature.

[184]  J. Gutkind,et al.  Modulation of canonical Wnt signaling by the extracellular matrix component biglycan , 2011, Proceedings of the National Academy of Sciences.

[185]  R. DeFronzo,et al.  Chromatin occupancy of transcription factor 7-like 2 (TCF7L2) and its role in hepatic glucose metabolism , 2011, Diabetologia.

[186]  T. Vacík,et al.  A novel mechanism for the transcriptional regulation of Wnt signaling in development. , 2011, Genes & development.

[187]  Jun Wang,et al.  BMP signaling in congenital heart disease: new developments and future directions. , 2011, Birth defects research. Part A, Clinical and molecular teratology.

[188]  V. Christoffels,et al.  Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2. , 2011, Birth defects research. Part A, Clinical and molecular teratology.

[189]  H. Bernardi,et al.  Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. , 2011, American journal of physiology. Cell physiology.

[190]  Randy L. Johnson,et al.  Hippo Pathway Inhibits Wnt Signaling to Restrain Cardiomyocyte Proliferation and Heart Size , 2011, Science.

[191]  S. Byers,et al.  Cell-context dependent TCF/LEF expression and function: alternative tales of repression, de-repression and activation potentials. , 2011, Critical reviews in eukaryotic gene expression.

[192]  F. Lang,et al.  Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by β-catenin. , 2010, Biochemical and biophysical research communications.

[193]  M. Bergmann WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. , 2010, Circulation research.

[194]  Lynn A. Megeney,et al.  Wnt11 Promotes Cardiomyocyte Development by Caspase-Mediated Suppression of Canonical Wnt Signals , 2010, Molecular and Cellular Biology.

[195]  R. Xavier,et al.  Wnt signaling regulates mitochondrial physiology and insulin sensitivity. , 2010, Genes & development.

[196]  David M. Harris,et al.  Glycogen Synthase Kinase-3&bgr; Regulates Post–Myocardial Infarction Remodeling and Stress-Induced Cardiomyocyte Proliferation In Vivo , 2010, Circulation research.

[197]  O. Mäkitie,et al.  Low density lipoprotein receptor‐related protein 5 (LRP5) mutations and osteoporosis, impaired glucose metabolism and hypercholesterolaemia , 2010, Clinical endocrinology.

[198]  H. Katus,et al.  Wnt Signaling Is Critical for Maladaptive Cardiac Hypertrophy and Accelerates Myocardial Remodeling , 2010, Hypertension.

[199]  J. Pérez-Pomares,et al.  Cardiogenesis: An Embryological Perspective , 2010, Journal of cardiovascular translational research.

[200]  E. Verheyen,et al.  Regulation of Wnt/β‐catenin signaling by protein kinases , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[201]  Xi He,et al.  Wnt/ β -catenin signaling: components, mechanisms, and diseases , 2010 .

[202]  A. Pichard,et al.  Activation of Wnt/β-Catenin Signaling Increases Insulin Sensitivity through a Reciprocal Regulation of Wnt10b and SREBP-1c in Skeletal Muscle Cells , 2009, PloS one.

[203]  R. Nicholson,et al.  Src-Dependent Changes in Beta-Catenin Activity Promote a Migratory Phenotype in Endocrine-Resistant Breast Cancer Cells , 2009 .

[204]  Ping Chen,et al.  beta-Catenin/TCF/LEF1 can directly regulate phenylephrine-induced cell hypertrophy and Anf transcription in cardiomyocytes. , 2009, Biochemical and biophysical research communications.

[205]  T. Schlange,et al.  Wnt3a regulates proliferation and migration of HUVEC via canonical and non-canonical Wnt signaling pathways. , 2009, Biochemical and biophysical research communications.

[206]  R. Boisgard,et al.  Proteomic analysis of β‐catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway , 2009, Proteomics.

[207]  Randall T. Moon,et al.  Proximal events in Wnt signal transduction , 2009, Nature Reviews Molecular Cell Biology.

[208]  X. Chen,et al.  PR55α, a Regulatory Subunit of PP2A, Specifically Regulates PP2A-mediated β-Catenin Dephosphorylation , 2009, The Journal of Biological Chemistry.

[209]  N. Sarvetnick,et al.  Lack of β-catenin in early life induces abnormal glucose homeostasis in mice , 2009, Diabetologia.

[210]  R. Schwartz,et al.  Genetic Fate Mapping Identifies Second Heart Field Progenitor Cells As a Source of Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy , 2009, Circulation research.

[211]  Chulan Kwon,et al.  A Regulatory Pathway Involving Notch1/β-Catenin/Isl1 Determines Cardiac Progenitor Cell Fate , 2009, Nature Cell Biology.

[212]  Hee-Sae Park,et al.  Beta-catenin modulates the level and transcriptional activity of Notch1/NICD through its direct interaction. , 2009, Biochimica et biophysica acta.

[213]  Xueying Lin,et al.  Distinct functions of Wnt/β-catenin signaling in KV development and cardiac asymmetry , 2009, Development.

[214]  Kira T. Pate,et al.  Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression , 2009, BMC Cancer.

[215]  J. Balligand,et al.  β-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation , 2008, Proceedings of the National Academy of Sciences.

[216]  P. Shepherd,et al.  Glucose induces an autocrine activation of the Wnt/beta-catenin pathway in macrophage cell lines. , 2008, The Biochemical journal.

[217]  B. Doble,et al.  Deletion of GSK-3beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. , 2008, The Journal of clinical investigation.

[218]  I. Komuro,et al.  IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis , 2008, Nature.

[219]  David A. Williams,et al.  Rac1 Activation Controls Nuclear Localization of β-catenin during Canonical Wnt Signaling , 2008, Cell.

[220]  W. Birchmeier,et al.  Distinct roles of Wnt/β-catenin and Bmp signaling during early cardiogenesis , 2007, Proceedings of the National Academy of Sciences.

[221]  K. Zaret,et al.  Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. , 2007, Molecular cell.

[222]  L. Sanderson,et al.  Comprehensive Analysis of PPARα-Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling , 2007, PPAR research.

[223]  Michael D. Schneider,et al.  Cardiac-specific haploinsufficiency of beta-catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction. , 2007, Journal of molecular and cellular cardiology.

[224]  R. Moon,et al.  The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. , 2007, Cell stem cell.

[225]  M. Lu,et al.  Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. , 2007, The Journal of clinical investigation.

[226]  Chulan Kwon,et al.  Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors , 2007, Proceedings of the National Academy of Sciences.

[227]  R. Moon,et al.  Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells , 2007, Proceedings of the National Academy of Sciences.

[228]  M. Rosenfeld,et al.  β-Catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis , 2007, Proceedings of the National Academy of Sciences.

[229]  W. Birchmeier,et al.  &bgr;-Catenin Downregulation Is Required for Adaptive Cardiac Remodeling , 2007, Circulation research.

[230]  Thomas Thum,et al.  MicroRNAs in the Human Heart: A Clue to Fetal Gene Reprogramming in Heart Failure , 2007, Circulation.

[231]  R. Heinrich,et al.  Protein phosphatase 1 regulates assembly and function of the β‐catenin degradation complex , 2007, The EMBO journal.

[232]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[233]  A. C. Williams,et al.  Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia , 2007, Nature Cell Biology.

[234]  A. Ludwig,et al.  Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination , 2006, Development.

[235]  Mei-shan Li,et al.  Activated β-catenin induces myogenesis and inhibits adipogenesis in BM-derived mesenchymal stromal cells , 2007 .

[236]  조현주 β-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts , 2007 .

[237]  I. Komuro,et al.  Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis , 2006, Proceedings of the National Academy of Sciences.

[238]  R. Nusse,et al.  Wnts as ligands: processing, secretion and reception , 2006, Oncogene.

[239]  M. Keating,et al.  The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. , 2006, Chemistry & biology.

[240]  S. Farmer,et al.  Functional Interaction between Peroxisome Proliferator-Activated Receptor γ and β-Catenin , 2006, Molecular and Cellular Biology.

[241]  Juliet A. Ellis,et al.  The inner nuclear membrane protein Emerin regulates β‐catenin activity by restricting its accumulation in the nucleus , 2006, The EMBO journal.

[242]  Michael D. Schneider,et al.  Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. , 2006, The Journal of clinical investigation.

[243]  Huiyun Liang,et al.  PGC-1alpha: a key regulator of energy metabolism. , 2006, Advances in physiology education.

[244]  R. Liao,et al.  The beta-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. , 2006, Molecular and cellular biology.

[245]  K. Basler,et al.  Transcription under the control of nuclear Arm/beta-catenin. , 2006, Current biology : CB.

[246]  T. Yamaguchi,et al.  Wnt3alinks left-right determination with segmentation and anteroposterior axis elongation , 2005, Development.

[247]  M. Asashima,et al.  Maternal Wnt11 Activates the Canonical Wnt Signaling Pathway Required for Axis Formation in Xenopus Embryos , 2005, Cell.

[248]  R. Hatala,et al.  Arrhythmogenic right ventricular cardiomyopathy/dysplasia. , 2005, Bratislavske lekarske listy.

[249]  Mark Peifer,et al.  Decisions, decisions: beta-catenin chooses between adhesion and transcription. , 2005, Trends in cell biology.

[250]  Yu Wei,et al.  Interaction and Functional Cooperation between the LIM Protein FHL2, CBP/p300, and β-Catenin , 2004, Molecular and Cellular Biology.

[251]  Nam-Chul Ha,et al.  Mechanism of Phosphorylation-Dependent Binding of APC to β-Catenin and Its Role in β-Catenin Degradation , 2004 .

[252]  D. Kimelman,et al.  Crystal structure of a beta-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. , 2004, Molecular cell.

[253]  M. Buckingham,et al.  The clonal origin of myocardial cells in different regions of the embryonic mouse heart. , 2004, Developmental cell.

[254]  J. Saffitz,et al.  Cardiac-Specific Induction of the Transcriptional Coactivator Peroxisome Proliferator-Activated Receptor &ggr; Coactivator-1&agr; Promotes Mitochondrial Biogenesis and Reversible Cardiomyopathy in a Developmental Stage-Dependent Manner , 2004, Circulation research.

[255]  C. Kai,et al.  The PDZ Protein Tax-interacting Protein-1 Inhibits β-Catenin Transcriptional Activity and Growth of Colorectal Cancer Cells* , 2003, Journal of Biological Chemistry.

[256]  Mohit M. Jain,et al.  Cardiac-Specific Overexpression of GLUT1 Prevents the Development of Heart Failure Attributable to Pressure Overload in Mice , 2002, Circulation.

[257]  R. Hresko,et al.  Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles. , 2002, American journal of physiology. Endocrinology and metabolism.

[258]  Sandipan Chatterjee,et al.  Wnt/wingless Signaling Requires Bcl9/legless-mediated Recruitment of Pygopus to the Nuclear Beta-catenin-tcf Complex , 2022 .

[259]  Xi He,et al.  Control of β-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism , 2002, Cell.

[260]  I. Smoak Hypoglycemia and embryonic heart development. , 2002, Frontiers in bioscience : a journal and virtual library.

[261]  Xianlin Han,et al.  The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. , 2002, The Journal of clinical investigation.

[262]  R. Tian,et al.  Responses of GLUT4-Deficient Hearts to Ischemia Underscore the Importance of Glycolysis , 2001, Circulation.

[263]  D. Severson,et al.  Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. , 2000, American journal of physiology. Endocrinology and metabolism.

[264]  Kris Vleminckx,et al.  The p300/CBP acetyltransferases function as transcriptional coactivators of β‐catenin in vertebrates , 2000, The EMBO journal.

[265]  P. Ping,et al.  Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. , 1999, Circulation research.

[266]  R. Nusse,et al.  Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. , 1999, Genes & development.

[267]  Hideki Yamamoto,et al.  Phosphorylation of Axin, a Wnt Signal Negative Regulator, by Glycogen Synthase Kinase-3β Regulates Its Stability* , 1999, The Journal of Biological Chemistry.

[268]  B. Geiger,et al.  Inhibition of β-catenin-mediated transactivation by cadherin derivatives , 1998 .

[269]  Y. Yazaki,et al.  Hypoxia and hypoxia/reoxygenation activate Src family tyrosine kinases and p21ras in cultured rat cardiac myocytes. , 1996, Biochemical and biophysical research communications.

[270]  L. Larue,et al.  Lack of beta-catenin affects mouse development at gastrulation. , 1995, Development.

[271]  J. Wisneski,et al.  Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. , 1988, The Journal of clinical investigation.

[272]  J. Wisneski,et al.  Dual carbon-labeled isotope experiments using D-[6-14C] glucose and L-[1,2,3-13C3] lactate: a new approach for investigating human myocardial metabolism during ischemia. , 1985, Journal of the American College of Cardiology.

[273]  Harold E. Varmus,et al.  Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome , 1982, Cell.

[274]  R. Behrman,et al.  Plasma nonesterified fatty acid and blood glucose levels in healthy and hypoxemic newborn infants. , 1974, The Journal of pediatrics.