The Many Classical Faces of Quantum Structures

Interpretational problems with quantum mechanics can be phrased precisely by only talking about empirically accessible information. This prompts a mathematical reformulation of quantum mechanics in terms of classical mechanics. We survey this programme in terms of algebraic quantum theory.

[1]  Hans Halvorson,et al.  Deep beauty : understanding the quantum world through mathematical innovation , 2011 .

[2]  A. Doering,et al.  Quantum States and Measures on the Spectral Presheaf , 2008, 0809.4847.

[3]  John Earman,et al.  Superselection Rules for Philosophers , 2008 .

[4]  Chris Heunen,et al.  Relative Frobenius algebras are groupoids , 2011, 1112.1284.

[5]  I. Fischer State Spaces Of Operator Algebras Basic Theory Orientations And C Products , 2016 .

[6]  A. J. Lindenhovius,et al.  Classifying Finite-Dimensional C*-Algebras by Posets of Their Commutative C*-Subalgebras , 2015, 1501.03030.

[7]  Gérard G. Emch,et al.  Algebraic methods in statistical mechanics and quantum field theory , 1972 .

[8]  Hans Weber,et al.  The order topology for a von Neumann algebra , 2014, 1411.1890.

[9]  Bas Spitters,et al.  THE GELFAND SPECTRUM OF A NONCOMMUTATIVE C*-ALGEBRA: A TOPOS-THEORETIC APPROACH , 2011, Journal of the Australian Mathematical Society.

[10]  Richard V. Kadison,et al.  Perturbations of Von Neumann Algebras I Stability of Type , 1972 .

[11]  Bart Jacobs,et al.  Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.

[12]  Kenneth P. Bogart,et al.  Characterizations of partition lattices , 1984 .

[13]  N. Kalton,et al.  Distances between Banach spaces , 1997, math/9709211.

[14]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[15]  Klaas Landsman Bohrification: From Classical Concepts to Commutative Operator Algebras , 2017 .

[16]  Jan Hamhalter,et al.  Orthogonal Measures on State Spaces and Context Structure of Quantum Theory , 2016 .

[17]  I. Singer,et al.  EXTENSIONS OF PURE STATES. , 1959 .

[18]  M. Ozawa A classification of type I $AW^{*}$ algebras and Boolean valued analysis , 1984 .

[19]  Chris Heunen Piecewise Boolean Algebras and Their Domains , 2014, ICALP.

[20]  Masanao Ozawa A Transfer Principle from Von Neumann Algebras to AW*-Algebras , 1985 .

[21]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[22]  Jeffrey Bub,et al.  Characterizing Quantum Theory in Terms of Information-Theoretic Constraints , 2002 .

[23]  Georges Chevalier,et al.  Automorphisms of An Orthomodular Poset of Projections , 2002, math/0211461.

[24]  Andreas Doering,et al.  “What is a Thing?”: Topos Theory in the Foundations of Physics , 2008, 0803.0417.

[25]  Joost Nuiten Bohrification of local nets , 2012 .

[26]  John E. Hershey,et al.  Computation , 1991, Digit. Signal Process..

[27]  Nadish de Silva From Topology to Noncommutative Geometry: $K$-theory , 2014, 1408.1170.

[28]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[29]  Chris Heunen,et al.  Erratum to: Noncommutativity as a Colimit , 2013, Appl. Categorical Struct..

[30]  J. Wright,et al.  The Mackey-Gleason Problem , 1992, math/9204228.

[31]  J. Hamhalter,et al.  STRUCTURE OF ASSOCIATIVE SUBALGEBRAS OF JORDAN OPERATOR ALGEBRAS , 2011 .

[32]  Armin Uhlmann,et al.  Existence and Density Theorems for Stochastic Maps on Commutative C*‐algebras , 1980 .

[33]  Aleks Kissinger,et al.  Compositional Quantum Logic , 2013, Computation, Logic, Games, and Quantum Foundations.

[34]  F. Shultz,et al.  Orientation in operator algebras. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Robin Giles,et al.  A Non-Commutative Generalization of Topology , 1971 .

[36]  Rui Soares Barbosa,et al.  Partial and total ideals in von Neumann algebras , 2014 .

[37]  Samson Abramsky,et al.  The sheaf-theoretic structure of non-locality and contextuality , 2011, 1102.0264.

[38]  Manuel L. Reyes,et al.  Sheaves that fail to represent matrix rings , 2012, 1211.4005.

[39]  Jan Hamhalter,et al.  Dye's Theorem and Gleason's Theorem for AW*-algebras , 2014, 1408.4597.

[40]  Aleks Kissinger,et al.  Categories of quantum and classical channels , 2016, Quantum Inf. Process..

[41]  Jan Hamhalter,et al.  Isomorphisms of ordered structures of abelian C⁎-subalgebras of C⁎-algebras , 2011 .

[42]  Bernhard Banaschewski,et al.  A globalisation of the Gelfand duality theorem , 2006, Ann. Pure Appl. Log..

[43]  Eberhard Zeidler,et al.  Quantum field theory and gravity : conceptual and mathematical advances in the search for a unified framework , 2012 .

[44]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[45]  P. D. Finch On the Structure of Quantum Logic , 1969, J. Symb. Log..

[46]  Andreas Doering,et al.  Contextual Entropy and Reconstruction of Quantum States , 2012, 1208.2046.

[47]  Jan Hamhalter,et al.  Quantum Measure Theory , 2003 .

[48]  Chris Heunen Complementarity in Categorical Quantum Mechanics , 2010 .

[49]  Chris Heunen,et al.  Extending obstructions to noncommutative functorial spectra , 2014, 1407.2745.

[50]  Bas Spitters,et al.  Bohrification of operator algebras and quantum logic , 2009, Synthese.

[51]  R. Haag,et al.  Local quantum physics , 1992 .

[52]  Chris Heunen,et al.  Diagonalizing matrices over AW*−algebras , 2013 .

[53]  C. J. Isham,et al.  A Topos Foundation for Theories of Physics: IV. Categories of Systems , 2008 .

[54]  U. Haagerup,et al.  The Effros-Maréchal topology in the space of von Neumann algebras , 1998 .

[55]  Matthew F Pusey,et al.  On the reality of the quantum state , 2011, Nature Physics.

[56]  Carl Winsløw,et al.  The Effros-Maréchal topology in the space of von Neumann algebras , 1998 .

[57]  Martino Lupini,et al.  Borel complexity and automorphisms of C*-algebras , 2014, 1404.3568.

[58]  Marvin Marcus,et al.  Some results on unitary matrix groups , 1970 .

[59]  Bas Spitters,et al.  Intuitionistic Quantum Logic of an n-level System , 2009, Foundations of Physics.

[60]  P. A. Firby Lattices and Compactifications, III , 1973 .

[61]  Stanley P. Gudder Partial algebraic structures associated with orthomodular posets. , 1972 .

[62]  Chris Heunen,et al.  Discretization of C*-algebras , 2014, 1412.1721.

[63]  Andre Kornell,et al.  V*-algebras , 2015, 1502.01516.

[64]  Bas Spitters,et al.  Mathematical Physics A Topos for Algebraic Quantum Theory , 2009 .

[65]  Andre Kornell Quantum Collections , 2012 .

[66]  C. J. Isham,et al.  Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.

[67]  Joseph Ben Geloun,et al.  Topos Analogues of the KMS State , 2012, 1207.0227.

[68]  M. Sentís Quantum theory of open systems , 2002 .

[69]  Hans F. de Groote Observables IV: The presheaf perspective , 2007 .

[70]  Chris Heunen,et al.  Characterizations of Categories of Commutative C*-Subalgebras , 2011, 1106.5942.

[71]  Sidney A. Morris A characterization of the topological group of real numbers , 1986, Bulletin of the Australian Mathematical Society.

[72]  J. Vicary Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.

[73]  D. James,et al.  Qubit quantum state tomography , 2004 .

[74]  J. Moffat,et al.  On groups of automorphisms of operator algebras , 1977, Mathematical Proceedings of the Cambridge Philosophical Society.

[75]  Gérard G. Emch,et al.  Mathematical and conceptual foundations of 20th-century physics , 1984 .

[76]  Rui Soares Barbosa,et al.  Unsharp Values, Domains and Topoi , 2012 .

[77]  Chris Heunen,et al.  Domains of commutative C*-subalgebras , 2019, Math. Struct. Comput. Sci..

[78]  F. Strocchi An introduction to the mathematical structure of quantum mechanics : a short course for mathematicians : lecture notes , 2005 .

[79]  Alain Connes,et al.  Noncommutative geometry , 1994 .

[80]  H. E. Jensen,et al.  Scattered $C^*$-algebras. , 1977 .

[81]  Charles A. Akemann,et al.  The general Stone-Weierstrass problem , 1969 .

[82]  Alain Connes,et al.  A Factor Not Anti-Isomorphic to Itself , 1975 .

[83]  Sander A.M. Wolters,et al.  Topos models for physics and topos theory , 2013, 1309.5640.

[84]  Marian Grabowski,et al.  Operational Quantum Physics , 2001 .

[85]  John Harding,et al.  Abelian subalgebras and the Jordan structure of a von Neumann algebra , 2010, 1009.4945.

[86]  Jan Hamhalter,et al.  Automorphisms of Order Structures of Abelian Parts of Operator Algebras and Their Role in Quantum Theory , 2014 .

[87]  Niels Bohr,et al.  Discussion with Einstein on Epistemological Problems in Atomic Physics , 1996 .

[88]  Bas Spitters,et al.  The principle of general tovariance , 2008 .

[89]  Gérard G. Emch Mathematical Topics between Classical and Quantum Mechanics , 2002 .

[90]  D. Spielman,et al.  Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.

[91]  Chris Heunen,et al.  On the Functor ℓ2 , 2010, Computation, Logic, Games, and Quantum Foundations.

[92]  Irving Kaplansky,et al.  PROJECTIONS IN BANACH ALGEBRAS , 1951 .

[93]  Chris Heunen,et al.  Noncommutativity as a Colimit , 2010, Appl. Categorical Struct..

[94]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[95]  C. J. Isham,et al.  A topos foundation for theories of physics: I. Formal languages for physics , 2007 .

[96]  Chris J. Isham Deep Beauty: Topos Methods in the Foundations of Physics , 2011 .

[97]  Tobias Fritz,et al.  Compositories and Gleaves , 2013, 1308.6548.

[98]  Manuel L. Reyes,et al.  Obstructing extensions of the functor spec to noncommutative rings , 2011, 1101.2239.

[99]  Robert W. Spekkens,et al.  The Paradigm of Kinematics and Dynamics Must Yield to Causal Structure , 2012, 1209.0023.

[100]  Chris Heunen,et al.  Active lattices determine AW*−algebras , 2012, 1212.5778.

[101]  Samson Abramsky,et al.  H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.

[102]  Andreas Döring Kochen–Specker Theorem for von Neumann Algebras , 2005 .

[103]  Sander Wolters,et al.  A Comparison of Two Topos-Theoretic Approaches to Quantum Theory , 2010, 1010.2031.

[104]  Gary F. Birkenmeier,et al.  π-Baer rings , 2017 .

[105]  A sheaf model for intuitionistic quantum mechanics , 1995, Appl. Categorical Struct..

[106]  M. Keyl Fundamentals of quantum information theory , 2002, quant-ph/0202122.

[107]  Gaisi Takeuti C*-algebras and Boolean valued analysis , 1983 .

[108]  Richard V. Kadison,et al.  Infinite unitary groups , 1952 .

[109]  Steven Vickers,et al.  The Born rule as structure of spectral bundles (extended abstract) , 2012 .

[110]  Bas Spitters,et al.  The Space of Measurement Outcomes as a Spectral Invariant for Non-Commutative Algebras , 2012 .

[111]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[112]  Aleks Kissinger,et al.  Can quantum theory be characterized in information-theoretic terms? , 2016, ArXiv.

[113]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[114]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[115]  Viggo Stoltenberg-hansen,et al.  In: Handbook of Logic in Computer Science , 1995 .

[116]  Bas Spitters,et al.  Gelfand spectra in Grothendieck toposes using geometric mathematics , 2013, QPL.

[117]  David L Hurd The Logical Analysis of Quantum Mechanics , 1974 .

[118]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[119]  Cecilia Flori A First Course in Topos Quantum Theory , 2013 .

[120]  C. J. Isham,et al.  A Topos Perspective on the Kochen-Specker Theorem II. Conceptual Aspects and Classical Analogues , 1998 .

[121]  Raouf Dridi,et al.  Topos logic in measurement-based quantum computation , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[122]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[123]  H. Hanche-Olsen,et al.  Jordan operator algebras , 1984 .

[124]  Andreas Doering,et al.  Flows on Generalised Gelfand Spectra of Nonabelian Unital C*-Algebras and Time Evolution of Quantum Systems , 2012, 1212.4882.

[125]  G. Watts Cunningham Albert Einstein: Philosopher-Scientist. Paul Arthur , 1951 .

[126]  Miklós Rédei,et al.  Quantum Logic in Algebraic Approach , 1998 .