Accelerating convergence of an iterative solution of finite difference frequency domain problems via schur complement domain decomposition.

We show that iterative solution of Maxwell's equations using the finite-difference frequency-domain method can be significantly accelerated by using a Schur complement domain decomposition method. We account for the improvement by analyzing the spectral properties of the linear systems resulting from the use of the domain decomposition method.

[1]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[2]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[3]  Mario A. Storti,et al.  A preconditioner for the Schur complement matrix , 2006, Adv. Eng. Softw..

[4]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[5]  M. Neytcheva On element-by-element Schur complement approximations , 2011 .

[6]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[7]  M. Wegener,et al.  Past Achievements and Future Challenges in 3D Photonic Metamaterials , 2011, 1109.0084.

[8]  Tal Ellenbogen,et al.  Controlling light with metamaterial-based nonlinear photonic crystals , 2015, Nature Photonics.

[9]  Jörg Liesen,et al.  Convergence analysis of Krylov subspace methods , 2004 .

[10]  Shanhui Fan,et al.  Choice of the perfectly matched layer boundary condition for iterative solvers of the frequency-domain Maxwell's equations , 2012, Other Conferences.

[11]  Federico Capasso,et al.  Near-Field Imaging of Phased Array Metasurfaces. , 2015, Nano letters.

[12]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[13]  Jianming Jin,et al.  Parallel FETI‐DP algorithm for efficient simulation of large‐scale EM problems , 2016 .

[14]  Tingting Wu,et al.  A dispersion minimizing subgridding finite difference scheme for the Helmholtz equation with PML , 2014, J. Comput. Appl. Math..

[15]  Y. Saad,et al.  Sparse approximations of the Schur complement for parallel algebraic hybrid linear solvers in 3 D , 2011 .