The Future of Digital Scholarship

Abstract This paper advocates that connectivity is the technological foundation of digital scholarship and argues that the characteristics of modern science, i.e. data-centric, multidisciplinary, open, network-centric and heavily dependent on internet technologies entail the creation of a linked, semantically enhanced scholarly record composed of interconnected discipline-specific literature and scientific, social, and humanities data spaces. The changing scenario of the scholarly record is illustrated by describing the principal transformations now being enabled by advanced linking and semantic technologies. The main functionality of a cyberscholarship infrastructure is described, i.e. the ability to effectively and efficiently support a linking environment.

[1]  Carole A. Goble,et al.  Workflow-Centric Research Objects: A First Class Citizen in the Scholarly Discourse , 2012, SePublica@ESWC.

[2]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[3]  Tara McPherson Scaling Vectors: Thoughts on the Future of Scholarly Communication , 2010 .

[4]  Jane Hunter,et al.  Scientific Models: A User-oriented Approach to the Integration of Scientific Data and Digital Libraries , 2006 .

[5]  Paolo Manghi,et al.  A vision towards Scientific Communication Infrastructures , 2013, International Journal on Digital Libraries.

[6]  Christian Bizer,et al.  Evolving the Web into a Global Data Space , 2011, BNCOD.

[7]  Norman Paskin,et al.  Digital Object Identifiers for scientific data , 2005, Data Sci. J..

[8]  Oscar Naim,et al.  Word add-in for ontology recognition: semantic enrichment of scientific literature , 2010, BMC Bioinformatics.

[9]  Carol Tenopir,et al.  Viewing and reading behaviour in a virtual environment: The full-text download and what can be read into it , 2008, Aslib Proc..

[10]  Allen H. Renear,et al.  Strategic Reading, Ontologies, and the Future of Scientific Publishing , 2009, Science.

[11]  Simon Buckingham Shum,et al.  Hypotheses, evidence and relationships: The HypER approach for representing scientific knowledge claims , 2009, ISWC 2009.

[12]  Sean Bechhofer,et al.  Research Objects: Towards Exchange and Reuse of Digital Knowledge , 2010 .

[13]  Christian Bizer Interlinking Scientific Data on a Global Scale , 2013, Data Sci. J..

[14]  David M. Shotton,et al.  Improving The Future of Research Communications and e-Scholarship (Dagstuhl Perspectives Workshop 11331) , 2015, Dagstuhl Manifestos.

[15]  Victoria S. Uren,et al.  Modeling naturalistic argumentation in research literatures: Representation and interaction design issues , 2007, Int. J. Intell. Syst..

[16]  Mark Gerstein,et al.  Publishing perishing? Towards tomorrow's information architecture , 2007, BMC Bioinformatics.

[17]  John Mackenzie Owen,et al.  The Scientific Article in the Age of Digitization , 2006, Information Science and Knowledge Management.

[18]  David M. Shotton,et al.  Semantic publishing: the coming revolution in scientific journal publishing , 2009, Learn. Publ..

[19]  David Maier,et al.  From databases to dataspaces: a new abstraction for information management , 2005, SGMD.

[20]  Joost Kircz,et al.  New practices for electronic publishing 2: New forms of the scientific paper , 2002, Learn. Publ..

[21]  Micah Altman,et al.  A Proposed Standard for the Scholarly Citation of Quantitative Data , 2008 .

[22]  Anita de Waard,et al.  From Proteins to Fairytales: Directions in Semantic Publishing , 2010, IEEE Intell. Syst..

[23]  Wolfgang Nejdl,et al.  Smart Space for Learning: A Mediation Infrastructure for Learning Services , 2003 .

[24]  Christine L. Borgman,et al.  Data, disciplines, and scholarly publishing , 2008, Learn. Publ..

[25]  Anita de Waard From Proteins to Fairytales: Directions in Semantic Publishing , 2010, IEEE Intelligent Systems.

[26]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[27]  Clifford A. Lynch,et al.  Jim Gray's fourth paradigm and the construction of the scientific record , 2009, The Fourth Paradigm.

[28]  Michael J. A. Berry,et al.  An Introduction to Data Mining , 2003 .

[29]  Luc Moreau,et al.  The Open Provenance Model: An Overview , 2008, IPAW.

[30]  Jennifer Widom,et al.  Panda: A System for Provenance and Data , 2010, IEEE Data Eng. Bull..

[31]  Christian Chiarcos,et al.  Linked Data in Linguistics , 2012, Springer Berlin Heidelberg.

[32]  Philip E. Bourne,et al.  Will a Biological Database Be Different from a Biological Journal? , 2005, PLoS Comput. Biol..

[33]  F.A.P. Harmsze A modular structure for scientific articles in an electronic environment , 2000 .

[34]  M. HamidR.Jamali,et al.  Characterising and evaluating information seeking behaviour in a digital environment: Spotlight on the 'bouncer' , 2007, Inf. Process. Manag..

[35]  Tony Hey,et al.  The Fourth Paradigm: Data-Intensive Scientific Discovery , 2009 .

[36]  Dennis Gannon,et al.  Workflows for e-Science, Scientific Workflows for Grids , 2014 .

[37]  Diego Calvanese,et al.  Linking Data to Ontologies , 2008, J. Data Semant..

[38]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[39]  Claudia Linnhoff-Popien,et al.  A Context Modeling Survey , 2004 .

[40]  Alexander S. Szalay,et al.  Online scientific data curation, publication, and archiving , 2002, SPIE Astronomical Telescopes + Instrumentation.

[41]  Carol Tenopir,et al.  Electronic Journals and Changes in Scholarly Article Seeking and Reading Patterns , 2008, D Lib Mag..