A top-down look at bottom-up electronics

Examines CMOS technology at the scaling limit and the role that new, molecular devices may play in future electronics systems. Advanced simulation techniques that capture quantum effects and atomistic structure allow realistic projections of ultimate CMOS. The same techniques allow us to explore unconventional devices such as carbon nanotube FETs, two-terminal molecular devices, and spintronic devices. The role of such devices in future heterogeneous systems will be considered. The talk will conclude with some general thoughts on the important role of the VLSI design community for electronics beyond the gigascale.

[1]  C. Hu,et al.  Sub-50 nm P-channel FinFET , 2001 .

[2]  Mark S. Lundstrom,et al.  The ballistic nanotransistor: a simulation study , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[3]  S. Datta,et al.  Examination of design and manufacturing issues in a 10 nm double gate MOSFET using nonequilibrium Green's function simulation , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[4]  D. DiVincenzo,et al.  Prospects for quantum computing , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[5]  H.-S.P. Wong,et al.  Extreme scaling with ultra-thin Si channel MOSFETs , 2002, Digest. International Electron Devices Meeting,.

[6]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[7]  Claudiu Muntele Molecular Random-Access Memory Cell Demonstrated , 2001 .

[8]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[9]  Bin Yu,et al.  FinFET scaling to 10 nm gate length , 2002, Digest. International Electron Devices Meeting,.

[10]  S. Datta,et al.  Resistance of a molecule , 2002, cond-mat/0208183.

[11]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[12]  K. Likharev,et al.  Sub-20-nm Electron Devices , 2003 .

[13]  S. Datta Nanoscale device modeling: the Green’s function method , 2000 .

[14]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[15]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[16]  Supriyo Datta,et al.  Current-voltage characteristics of molecular conductors: two versus three terminal , 2002 .

[17]  S. Wind,et al.  Carbon nanotube electronics , 2002, Digest. International Electron Devices Meeting,.

[18]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[19]  S. Slesazeck,et al.  Fully depleted surrounding gate transistor (SGT) for 70 nm DRAM and beyond , 2002, Digest. International Electron Devices Meeting,.

[20]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[21]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[22]  F. Morris,et al.  Transistors and tunnel diodes for analog/mixed-signal circuits and embedded memory , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[23]  S. Datta Electronic transport in mesoscopic systems , 1995 .