Solvent-tolerant bacteria in biocatalysis

The toxicity of fine chemicals to the producer organism is a problem in several biotechnological production processes. In several instances, an organic phase can be used to extract the toxic product from the aqueous phase during a fermentation. With the discovery of solvent-tolerant bacteria, more solvents can now be used in such two-liquid water-solvent systems. We are gaining new insights into the mechanisms of bacterial solvent tolerance, such as the active efflux of solvents from the cytoplasmic membrane and solvent-impermeable outer membranes.

[1]  H. Kobayashi,et al.  Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12 , 1997, Applied and environmental microbiology.

[2]  J. D. de Bont,et al.  Active efflux of toluene in a solvent-resistant bacterium , 1996, Journal of bacteriology.

[3]  K. Kobayashi,et al.  Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli , 1997, Applied and environmental microbiology.

[4]  R. Rogers,et al.  Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium , 1992, Applied and environmental microbiology.

[5]  D. White,et al.  Cell Envelope Changes in Solvent-Tolerant and Solvent-Sensitive Pseudomonas putida Strains following Exposure to o-Xylene , 1996, Applied and environmental microbiology.

[6]  F. Meinhardt,et al.  cis-trans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8 , 1997, Applied and environmental microbiology.

[7]  Juan L. Ramos,et al.  Efflux Pumps Involved in Toluene Tolerance in Pseudomonas putida DOT-T1E , 1998, Journal of bacteriology.

[8]  X. Li,et al.  Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[9]  M. Wubbolts,et al.  Biosynthesis of synthons in two-liquid-phase media. , 2000, Biotechnology and bioengineering.

[10]  B A Neilan,et al.  A Rhodococcus species that thrives on medium saturated with liquid benzene. , 1997, Microbiology.

[11]  J. Ramos,et al.  Mechanisms for Solvent Tolerance in Bacteria* , 1997, The Journal of Biological Chemistry.

[12]  K. Horikoshi,et al.  Effective Isolation and Identification of Toluene-tolerant Pseudomonas Strains , 1992 .

[13]  D. Lim,et al.  Isolation and Characterization of Toluene-Sensitive Mutants from the Toluene-Resistant Bacterium Pseudomonas putida GM73 , 1998, Journal of bacteriology.

[14]  T. Komatsu,et al.  A toluene-tolerant mutant of Pseudomonas aeruginosa lacking the outer membrane protein F. , 1995, Bioscience, biotechnology, and biochemistry.

[15]  H. Heipieper,et al.  The cis/trans isomerisation of unsaturated fatty acids in Pseudomonas putida S12: An indicator for environmental stress due to organic compounds , 1995 .

[16]  H. Heipieper,et al.  Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes , 1994, Applied and environmental microbiology.

[17]  S. Marqués,et al.  Survival in Soil of Different Toluene-Degrading Pseudomonas Strains after Solvent Shock , 1998, Applied and Environmental Microbiology.

[18]  M. Gottesman,et al.  Is the multidrug transporter a flippase? , 1992, Trends in biochemical sciences.

[19]  R. Schwartz,et al.  Epoxidation of 1,7-octadiene by Pseudomonas oleovorans: fermentation in the presence of cyclohexane , 1977, Applied and environmental microbiology.

[20]  M. Kobayashi,et al.  A close correlation between improvement of organic solvent tolerance levels and alteration of resistance toward low levels of multiple antibiotics in Escherichia coli. , 1995, Bioscience, biotechnology, and biochemistry.

[21]  A. Driessen,et al.  Energetics and Mechanism of Drug Transport Mediated by the Lactococcal Multidrug Transporter LmrP* , 1996, The Journal of Biological Chemistry.

[22]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[23]  J. Ramos,et al.  Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons , 1995, Journal of bacteriology.

[24]  P. Devaux,et al.  Static and dynamic lipid asymmetry in cell membranes. , 1991, Biochemistry.

[25]  F J Weber,et al.  Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. , 1996, Biochimica et biophysica acta.

[26]  S. Levy,et al.  Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli , 1997, Journal of bacteriology.

[27]  H. Heipieper,et al.  Effect of Environmental Factors on the trans/cis Ratio of Unsaturated Fatty Acids in Pseudomonas putida S12 , 1996, Applied and environmental microbiology.

[28]  K. Horikoshi,et al.  A benzene-tolerant bacterium utilizing sulfur compounds isolated from deep sea , 1993 .

[29]  A. Driessen,et al.  Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea , 1995, Molecular microbiology.

[30]  Gerben J. Zylstra,et al.  Identification and Molecular Characterization of an Efflux Pump Involved in Pseudomonas putida S12 Solvent Tolerance* , 1998, The Journal of Biological Chemistry.

[31]  B. Poolman,et al.  Interactions of cyclic hydrocarbons with biological membranes. , 1994, The Journal of biological chemistry.

[32]  W. Duetz,et al.  Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene , 1994, Applied and environmental microbiology.

[33]  K. Horikoshi,et al.  A Pseudomonas thrives in high concentrations of toluene , 1989, Nature.

[34]  K. Poole,et al.  Role of the Multidrug Efflux Systems ofPseudomonas aeruginosa in Organic Solvent Tolerance , 1998, Journal of bacteriology.

[35]  H. Nikaido Multidrug efflux pumps of gram-negative bacteria , 1996, Journal of bacteriology.

[36]  A. Bangham,et al.  Cation Permeability of Phospholipid Model Membranes: Effect of Narcotics , 1965, Nature.

[37]  D. Heinrichs,et al.  Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression , 1996, Antimicrobial agents and chemotherapy.

[38]  Robert B. Gennis,et al.  Biomembranes: Molecular Structure and Function , 1988 .

[39]  H. Heipieper,et al.  Mechanisms of resistance of whole cells to toxic organic solvents , 1994 .

[40]  T. Kudo,et al.  Production of 3-Vinylcatechol and Physiological Properties of Pseudomonas LF-3, Which Can Assimilate Styrene in a Two-phase (Solvent-Aqueous) System , 1997 .

[41]  J. D. de Bont,et al.  Effect of solvent adaptation on the antibiotic resistance in Pseudomonas putida S12 , 1997, Applied Microbiology and Biotechnology.

[42]  D. Heinrichs,et al.  Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine , 1993, Molecular microbiology.

[43]  H. Ishikawa,et al.  Organic-Solvent-Tolerant Bacterium Which Secretes Organic-Solvent-Stable Lipolytic Enzyme , 1994, Applied and environmental microbiology.

[44]  D. White,et al.  Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains , 1997, Journal of bacteriology.

[45]  J. D. de Bont,et al.  Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents , 1993, Applied and environmental microbiology.