Hole-transporting and emitting pendant polymers for organic electroluminescent devices

New hole-transporting pendant polymers with high glass-transition temperatures (Tgs) above 200 °C were designed and synthesized. Multilayer organic electroluminescent (EL) devices using the new polymers as the hole-transport layer and quinacridone-doped tris(8-quinolinolato)aluminum as the emitting layer exhibited high performance. One of the hole-transporting polymers functioned well as a hole injection buffer layer in organic EL devices. New green- and orange-emitting pendant polymers with high Tgs and desired ambipolar character were also designed and synthesized. Organic EL devices using these emitting polymers also exhibited good performance. One of the hole-transporting polymer showed a high hole carrier mobility of over 10-3 cm2V-1s-1 at an electric field of 1.0 × 105 Vcm-1, as determined by a time-of-flight method.