Voronoi cells, probabilistic bounds, and hypothesis testing in mixed integer linear models
暂无分享,去创建一个
[1] P. Teunissen. An optimality property of the integer least-squares estimator , 1999 .
[2] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[3] C. Shannon. Probability of error for optimal codes in a Gaussian channel , 1959 .
[4] Leonid Khachiyan,et al. On the complexity of approximating the maximal inscribed ellipsoid for a polytope , 1993, Math. Program..
[5] T. H. Mattheiss,et al. An Algorithm for Determining Irrelevant Constraints and all Vertices in Systems of Linear Inequalities , 1973, Oper. Res..
[6] J. L Finney,et al. A procedure for the construction of Voronoi polyhedra , 1979 .
[7] Peter Teunissen,et al. An analytical study of ambiguity decorrelation using dual frequency code and carrier phase , 1996 .
[8] A. R. Crathorne,et al. Economic Control of Quality of Manufactured Product. , 1933 .
[9] Emanuele Viterbo,et al. Computing the Voronoi cell of a lattice: the diamond-cutting algorithm , 1996, IEEE Trans. Inf. Theory.
[10] Peter Teunissen,et al. The probability distribution of the ambiguity bootstrapped GNSS baseline , 2001 .
[11] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[12] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[13] M. Balinski. An algorithm for finding all vertices of convex polyhedral sets , 1959 .
[14] P. Teunissen. A new method for fast carrier phase ambiguity estimation , 1994, Proceedings of 1994 IEEE Position, Location and Navigation Symposium - PLANS'94.
[15] P. Teunissen. Least-squares estimation of the integer GPS ambiguities , 1993 .
[16] Adrian Bowyer,et al. Computing Dirichlet Tessellations , 1981, Comput. J..
[17] Roger Fletcher,et al. Practical methods of optimization; (2nd ed.) , 1987 .
[18] G. Lachapelle,et al. Mixed Integer Observation Models, GPS Decorrelation and Integer Programming , 2003 .
[19] Karl-Rudolf Koch,et al. Parameter estimation and hypothesis testing in linear models , 1988 .
[20] László Babai,et al. On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..
[21] G. Ziegler. Lectures on Polytopes , 1994 .
[22] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..
[23] Stephen P. Boyd,et al. Integer parameter estimation in linear models with applications to GPS , 1998, IEEE Trans. Signal Process..
[24] Peiliang Xu. Random simulation and GPS decorrelation , 2001 .
[25] John H. Sheesley,et al. Quality Engineering in Production Systems , 1988 .
[26] Anja Vogler,et al. An Introduction to Multivariate Statistical Analysis , 2004 .
[27] Bradford W. Parkinson,et al. Global positioning system : theory and applications , 1996 .
[28] F. Thorne,et al. Geometry of Numbers , 2017, Algebraic Number Theory.
[29] Jerzy K baxsalary. A study of the equivalence between a gauss-markoff model and its augmentation by nuisance parameters , 1984 .
[30] Eldon Hansen,et al. Global optimization using interval analysis , 1992, Pure and applied mathematics.
[31] B. Hofmann-Wellenhof,et al. Galileo or for whom the bell tolls , 2000 .
[32] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[33] P. Teunissen. Success probability of integer GPS ambiguity rounding and bootstrapping , 1998 .
[34] Peiliang Xu,et al. Isotropic probabilistic models for directions, planes and referential systems , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[35] Peiliang Xu,et al. Voronoi cells, probabilistic bounds, and hypothesis testing in mixed integer linear models , 2006, IEEE Transactions on Information Theory.
[36] Tomas Gal. Zur Identifikation redundanter Nebenbedingungen in linearen Programmen , 1975, Z. Oper. Research.
[37] B. Fox,et al. Construction of Voronoi Polyhedra , 1978 .
[38] Hamdy A. Taha,et al. Integer Programming: Theory, Applications, and Computations , 1975 .
[39] Peter Teunissen,et al. Integer estimation in the presence of biases , 2001 .
[40] Peiliang Xu. A hybrid global optimization method: the multi-dimensional case , 2003 .
[41] Franklin A. Graybill,et al. Introduction to the Theory of Statistics, 3rd ed. , 1974 .
[42] Do Ba Khang,et al. A new algorithm to find all vertices of a polytope , 1989 .
[43] Alexander Vardy,et al. Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.
[44] P. Teunissen. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .
[45] Claus-Peter Schnorr,et al. Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.
[46] N. J. A. Sloane,et al. Voronoi regions of lattices, second moments of polytopes, and quantization , 1982, IEEE Trans. Inf. Theory.
[47] E. Grafarend. Mixed Integer-Real Valued Adjustment (IRA) Problems: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm , 2000, GPS Solutions.
[48] H.-J. Euler,et al. On a Measure for the Discernibility between Different Ambiguity Solutions in the Static-Kinematic GPS-Mode , 1991 .
[49] Stephen E. Fienberg,et al. Testing Statistical Hypotheses , 2005 .
[50] Peter Teunissen,et al. Some remarks on GPS ambiguity resolution. , 1997 .
[51] 徐 培亮,et al. Mixed Integer Geodetic Observation Models and Integer Programming with Applications to GPS Ambiguity Resolution. , 1998 .
[52] R. Fletcher. Practical Methods of Optimization , 1988 .
[53] Peter Teunissen. The parameter distributions of the integer GPS model , 2002 .
[54] József Ádám,et al. Vistas for Geodesy in the New Millennium , 2002 .
[55] Gerhard Beutler,et al. Rapid static positioning based on the fast ambiguity resolution approach , 1990 .
[56] P. Teunissen,et al. The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans , 1997 .
[57] P. Clarke. GPS Satellite Surveying , 2007 .
[58] Miroslav Manas,et al. Finding all vertices of a convex polyhedron , 1968 .
[59] L. M. M.-T.. Theory of Probability , 1929, Nature.
[60] A. Neumaier. Interval methods for systems of equations , 1990 .
[61] Pierre A. Devijver,et al. Computing multidimensional Delaunay tessellations , 1983, Pattern Recognit. Lett..
[62] J. Wolfowitz,et al. An Introduction to the Theory of Statistics , 1951, Nature.