Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM.

[1]  Katsuhiro Hanada,et al.  The structure‐specific endonuclease Mus81–Eme1 promotes conversion of interstrand DNA crosslinks into double‐strands breaks , 2006, The EMBO journal.

[2]  L. Thompson,et al.  The Fanconi anemia pathway limits the severity of mutagenesis. , 2006, DNA repair.

[3]  F. Couch,et al.  Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. , 2006, Molecular cell.

[4]  Weidong Wang,et al.  Fanconi Anemia Proteins Are Required To Prevent Accumulation of Replication-Associated DNA Double-Strand Breaks , 2006, Molecular and Cellular Biology.

[5]  J. Hoeijmakers,et al.  Fanconi Anemia (Cross)linked to DNA Repair , 2005, Cell.

[6]  A. D’Andrea,et al.  The Fanconi Anemia/BRCA pathway: new faces in the crowd. , 2005, Genes & development.

[7]  R. Kaptein,et al.  The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair. , 2005, Structure.

[8]  C. Mathew,et al.  The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J , 2005, Nature Genetics.

[9]  C. Vandenberg,et al.  The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair , 2005, Nature Genetics.

[10]  J. Pereira-Leal,et al.  The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway , 2005, Nature Structural &Molecular Biology.

[11]  S. Cantor,et al.  BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. , 2005, Cancer cell.

[12]  C. Mathew,et al.  A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M , 2005, Nature Genetics.

[13]  J. Ott,et al.  The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia , 2005, Nature Genetics.

[14]  T. Ellenberger,et al.  Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Cantor,et al.  Analysis of the DNA Substrate Specificity of the Human BACH1 Helicase Associated with Breast Cancer* , 2005, Journal of Biological Chemistry.

[16]  Lei Li,et al.  BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity , 2005, The EMBO journal.

[17]  M. F. White,et al.  Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition , 2005, The EMBO journal.

[18]  I. Demuth,et al.  Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation , 2004, Oncogene.

[19]  G. Pals,et al.  X-linked inheritance of Fanconi anemia complementation group B , 2004, Nature Genetics.

[20]  A. D’Andrea,et al.  ATR couples FANCD2 monoubiquitination to the DNA-damage response. , 2004, Genes & development.

[21]  F. Rosselli,et al.  BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks , 2004, The EMBO journal.

[22]  A. D’Andrea,et al.  Functional Interaction of Monoubiquitinated FANCD2 and BRCA2/FANCD1 in Chromatin , 2004, Molecular and Cellular Biology.

[23]  F. Rosselli,et al.  The DNA crosslink‐induced S‐phase checkpoint depends on ATR–CHK1 and ATR–NBS1–FANCD2 pathways , 2004, The EMBO journal.

[24]  W. Xiao,et al.  Functional domains required for the Saccharomyces cerevisiae Mus81-Mms4 endonuclease complex formation and nuclear localization. , 2003, DNA repair.

[25]  C. Bishop,et al.  A novel ubiquitin ligase is deficient in Fanconi anemia , 2003, Nature Genetics.

[26]  A. D’Andrea The Fanconi road to cancer. , 2003, Genes & development.

[27]  S. West,et al.  Identification and Characterization of the Human Mus81-Eme1 Endonuclease* , 2003, Journal of Biological Chemistry.

[28]  Weidong Wang,et al.  A Multiprotein Nuclear Complex Connects Fanconi Anemia and Bloom Syndrome , 2003, Molecular and Cellular Biology.

[29]  A. D’Andrea,et al.  The Fanconi anaemia/BRCA pathway , 2003, Nature Reviews Cancer.

[30]  S. Elledge,et al.  Checking on the fork: the DNA-replication stress-response pathway. , 2002, Trends in cell biology.

[31]  K. Komori,et al.  Novel endonuclease in Archaea cleaving DNA with various branched structure. , 2002, Genes & genetic systems.

[32]  Hans Joenje,et al.  Biallelic Inactivation of BRCA2 in Fanconi Anemia , 2002, Science.

[33]  J. Enzlin,et al.  The active site of the DNA repair endonuclease XPF–ERCC1 forms a highly conserved nuclease motif , 2002, The EMBO journal.

[34]  P. Russell,et al.  Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. , 2001, Molecular cell.

[35]  J. Yates,et al.  Mus81-Eme1 Are Essential Components of a Holliday Junction Resolvase , 2001, Cell.

[36]  G. Kupfer,et al.  Fanconi Anemia Proteins Localize to Chromatin and the Nuclear Matrix in a DNA Damage- and Cell Cycle-regulated Manner* , 2001, The Journal of Biological Chemistry.

[37]  D. Sgroi,et al.  BACH1, a Novel Helicase-like Protein, Interacts Directly with BRCA1 and Contributes to Its DNA Repair Function , 2001, Cell.

[38]  R. Wood,et al.  Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. , 2001, Nucleic acids research.

[39]  S. Ganesan,et al.  Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. , 2001, Molecular cell.

[40]  A. D’Andrea,et al.  The fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex. , 2000, Blood.

[41]  Q. Waisfisz,et al.  A physical complex of the Fanconi anemia proteins FANCG/XRCC9 and FANCA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  E. Koonin,et al.  Conserved domains in DNA repair proteins and evolution of repair systems. , 1999, Nucleic acids research.

[43]  W. de Laat,et al.  DNA Structural Elements Required for ERCC1-XPF Endonuclease Activity* , 1998, The Journal of Biological Chemistry.

[44]  R. Wood,et al.  Xeroderma Pigmentosum Group F Caused by a Defect in a Structure-Specific DNA Repair Endonuclease , 1996, Cell.

[45]  R. Ebright,et al.  Fluorescence anisotropy: rapid, quantitative assay for protein-DNA and protein-protein interaction. , 1996, Methods in enzymology.