The Tensile Behavior of Intraply Hybrid Composites II: Micromechanical Model

The standard shear-lag model is modified to allow for the determination of the stress concentration factors for any unidirectional intraply hybrid composite with random as well as deterministic arrangements of the filaments. Utilizing this micromechanical model in conjunction with the chain-of-bundles probability model, hybrids with different volume ratios of the constituents are analyzed. The method of analysis is the numerical Monte Carlo simulation technique. The well known "hybrid effect" for strains is confirmed. The Weibull distribution function is observed to be a good representation of the hybrid break ing strain. The estimated ultimate breaking strains show a significant improvement over previously cited results, and they appear to be more characteristic of experimental obser vations.

[1]  S. L. Phoenix,et al.  The Chain-of-Bundles Probability Model For the Strength of Fibrous Materials I: Analysis and Conjectures , 1978 .

[2]  J. Hedgepeth Stress Concentrations in Filamentary Structures , 1961 .

[3]  John M. Hedgepeth,et al.  Local Stress Concentrations in Imperfect Filamentary Composite Materials , 1967 .

[4]  George Sines,et al.  A Statistical Model for the Tensile Fracture of Parallel Fiber Composites , 1969 .

[5]  T. Chou,et al.  Monte Carlo Simulation of the Strength of Hybrid Composites , 1982 .

[6]  J. Hedgepeth,et al.  Stress Concentrations from Single-Filament Failures in Composite Materials , 1969 .

[7]  D. Harlow Statistical properties of hybrid composites. I. Recursion analysis , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  K. Potter,et al.  MECHANICAL BEHAVIOUR OF INTIMATELY-MIXED HYBRID COMPOSITES , 1980 .

[9]  B. W. Rosen,et al.  A statistical theory of material strength with application to composite materials , 1970 .

[10]  W. Fichter Stress concentrations in filament-stiffened sheets of finite length , 1970 .

[11]  C. Zweben An approximate method of analysis for notched unidirectional composites , 1974 .

[12]  H. Fukuda Stress concentration factors in unidirectional composites with random fiber spacing , 1985 .

[13]  S.J. Fariborz,et al.  The Tensile Behavior of Intraply Hybrid Composites I: Model and Simulation , 1985 .

[14]  S. L. Phoenix,et al.  The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials II: A Numerical Study of Convergence , 1978 .

[15]  C. Zweben Tensile strength of hybrid composites , 1977 .

[16]  S. L. Phoenix,et al.  Probability distributions for the strength of composite materials II: A convergent sequence of tight bounds , 1981 .

[17]  S. L. Phoenix,et al.  Probability distributions for the strength of composite materials I: two-level bounds , 1981 .

[18]  M. G. Bader,et al.  The strength of hybrid glass/carbon fibre composites , 1981 .

[19]  J. Summerscales,et al.  Hybrids — a review: Part 2. Physical properties , 1980 .

[20]  M. G. Bader,et al.  The strength of hybrid glass/carbon fibre composites , 1981 .

[21]  Richard L. Smith The random variation of stress concentration factors in fibrous composites , 1983 .

[22]  J. Summerscales,et al.  Carbon fibre and glass fibre hybrid reinforced plastics , 1978 .

[23]  T. Chou,et al.  Stress concentrations in a hybrid composite sheet , 1983 .

[24]  W. Fichter Stress concentrations in filament-stiffened sheets , 1969 .

[25]  R. S. Gross,et al.  Analysis of a unidirectional composite containing broken fibers and matrix damage , 1980 .

[26]  M. Phillips Composition parameters for hybrid composite materials , 1981 .

[27]  K. P. Oh A Monte Carlo Study of the Strength of Unidirectional Fiber-Reinforced Composites , 1979 .

[28]  J. Summerscales,et al.  Hybrids-a review: Part 1. Techniques, design and construction , 1979 .