Convergence analysis for parallel‐in‐time solution of hyperbolic systems
暂无分享,去创建一个
Hans De Sterck | Scott P. MacLachlan | Stephanie Friedhoff | Alexander J. M. Howse | S. MacLachlan | S. Friedhoff | H. Sterck
[1] Stefan Vandewalle,et al. Local Fourier Analysis of Multigrid for the Curl-Curl Equation , 2008, SIAM J. Sci. Comput..
[2] U. Trottenberg,et al. A note on MGR methods , 1983 .
[3] I. Yavneh,et al. On Multigrid Solution of High-Reynolds Incompressible Entering Flows* , 1992 .
[4] Achi Brandt,et al. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .
[5] James L. Thomas,et al. Half-Space Analysis of the Defect-Correction Method for Fromm Discretization of Convection , 2000, SIAM J. Sci. Comput..
[6] Stefan Vandewalle,et al. Multigrid Waveform Relaxation on Spatial Finite Element Meshes: The Discrete-Time Case , 1996, SIAM J. Sci. Comput..
[7] Stefan Vandewalle,et al. Multigrid Waveform Relaxation for Anisotropic Partial Differential Equations , 2002, Numerical Algorithms.
[8] Jürg Nievergelt,et al. Parallel methods for integrating ordinary differential equations , 1964, CACM.
[9] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[10] Martin J. Gander,et al. Multigrid interpretations of the parareal algorithm leading to an overlapping variant and MGRIT , 2018, Comput. Vis. Sci..
[11] Daniel Ruprecht,et al. Wave propagation characteristics of Parareal , 2017, Comput. Vis. Sci..
[12] Benjamin W. Ong,et al. Algorithm 965 , 2014, ACM Trans. Math. Softw..
[13] Shlomo Ta'asan,et al. On the Multigrid Waveform Relaxation Method , 1995, SIAM J. Sci. Comput..
[14] Ben S. Southworth,et al. Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time , 2018, SIAM J. Matrix Anal. Appl..
[15] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[16] Charbel Farhat,et al. Time‐parallel implicit integrators for the near‐real‐time prediction of linear structural dynamic responses , 2006 .
[17] Achi Brandt,et al. Multigrid solvers for the non-aligned sonic flow: the constant coefficient case , 1999 .
[18] Robert D. Falgout,et al. Convergence of the multigrid reduction in time algorithm for the linear elasticity equations , 2018, Numer. Linear Algebra Appl..
[19] Cornelis W. Oosterlee,et al. Multigrid Line Smoothers for Higher Order Upwind Discretizations of Convection-Dominated Problems , 1998 .
[20] Wolfgang Joppich,et al. Practical Fourier Analysis for Multigrid Methods , 2004 .
[21] Stefan Vandewalle,et al. Multigrid waveform relaxation on spatial finite element meshes , 1996 .
[22] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[23] Hans De Sterck,et al. Optimizing MGRIT and Parareal coarse-grid operators for linear advection , 2019, ArXiv.
[24] Shlomo Ta'asan,et al. Fourier-Laplace analysis of the multigrid waveform relaxation method for hyperbolic equations , 1996 .
[25] Scott P. MacLachlan,et al. A generalized predictive analysis tool for multigrid methods , 2015, Numer. Linear Algebra Appl..
[26] Guillaume Bal,et al. On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations , 2005 .
[27] Martin J. Gander,et al. Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .
[28] C. Rodrigo,et al. A multigrid waveform relaxation method for solving the poroelasticity equations , 2018 .
[29] Graham Horton,et al. Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods , 2005, Computing.
[30] Matthias Bolten,et al. A multigrid perspective on the parallel full approximation scheme in space and time , 2016, Numer. Linear Algebra Appl..
[31] K. Stüben,et al. Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .
[32] Martin J. Gander,et al. Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..
[33] Scott P. MacLachlan,et al. Local Fourier Analysis of Space-Time Relaxation and Multigrid Schemes , 2013, SIAM J. Sci. Comput..
[34] Ludmil T. Zikatanov,et al. On the Validity of the Local Fourier Analysis , 2017, Journal of Computational Mathematics.
[35] Cornelis W. Oosterlee,et al. Local Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs , 2011, Numer. Linear Algebra Appl..
[36] Scott P. MacLachlan,et al. Local Fourier analysis for mixed finite-element methods for the Stokes equations , 2019, J. Comput. Appl. Math..
[37] N. Anders Petersson,et al. Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..
[38] Robert D. Falgout,et al. Multilevel Convergence Analysis of Multigrid-Reduction-in-Time , 2018, SIAM J. Sci. Comput..
[39] S. MacLachlan,et al. TWO-LEVEL FOURIER ANALYSIS OF MULTIGRID FOR HIGHER-ORDER FINITE-ELEMENT METHODS∗ , 2018 .
[40] Hans De Sterck,et al. Parallel-In-Time Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equations , 2019, SIAM J. Sci. Comput..
[41] Martin J. Gander,et al. Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2014, SIAM J. Sci. Comput..
[42] Jan S. Hesthaven,et al. Communication-aware adaptive Parareal with application to a nonlinear hyperbolic system of partial differential equations , 2018, J. Comput. Phys..
[43] Francisco José Gaspar,et al. Multigrid Waveform Relaxation for the Time-Fractional Heat Equation , 2016, SIAM J. Sci. Comput..
[44] Robert D. Falgout,et al. Parallel time integration with multigrid , 2014 .
[45] J. Lions,et al. Résolution d'EDP par un schéma en temps « pararéel » , 2001 .
[46] Martin J. Gander,et al. 50 Years of Time Parallel Time Integration , 2015 .