Observing simulated galaxy clusters with phox: a novel X‐ray photon simulator

We present a novel, virtual X–ray observatory designed to obtain synthetic observations from hydro–numerical simulations, named PHOX. In particular, we provide a description of the code constituting the photon simulator and of the new approach implemented. We apply PHOX to simulated galaxy clusters in order to demonstrate its capabilities. In fact, X–ray observations of clusters of galaxies continue to provide us with an increasingly detailed picture of their structure and of the underlying physical phenomena governing the gaseous component, which dominates their baryonic content. Therefore, it is fundamental to find the most direct and faithful way to compare such observational data with hydrodynamical simulations of cluster–like objects, which can currently include various complex physical processes. Here, we present and analyse synthetic Suzaku observations of two cluster–size haloes obtained by processing with PHOX the hydrodynamical simulation of the large–scale, filament–like region in which they reside. Taking advantage of the simulated data, we test the results inferred from the X–ray analysis of the mock observations against the underlying, known solution. Remarkably, we are able to recover the theoretical temperature distribution of the two haloes by means of the multi–temperature fitting of the synthetic spectra. Moreover, the shapes of the reconstructed distributions allow us to trace the different thermal structure that distinguishes the dynamical state of the two haloes.

[1]  T. Ensslin,et al.  Cosmic ray feedback in hydrodynamical simulations of galaxy formation , 2006, astro-ph/0603485.

[2]  M. Meneghetti,et al.  Simulating the physical properties of dark matter and gas inside the cosmic web , 2005, astro-ph/0511357.

[3]  N. Okabe,et al.  High Metallicity of the X-Ray Gas Up to the Virial Radius of a Binary Cluster of Galaxies: Evidence of Galactic Superwinds at High-Redshift , 2007, 0705.2017.

[4]  S. Borgani,et al.  Chemical enrichment of galaxy clusters from hydrodynamical simulations , 2007, 0705.1921.

[5]  Yehuda Hoffman,et al.  Constrained Simulations of the Real Universe. II. Observational Signatures of Intergalactic Gas in the Local Supercluster Region , 2001, astro-ph/0109077.

[6]  D. Liedahl,et al.  Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.

[7]  H. Kawahara,et al.  Extracting Galaxy Cluster Gas Inhomogeneity from X-Ray Surface Brightness: A Statistical Approach and Application to Abell 3667 , 2008, 0807.2525.

[8]  B. Ciardi,et al.  The transition from population III to population II-I star formation , 2010, 1003.4992.

[9]  L. Moscardini,et al.  Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations , 2004, astro-ph/0404425.

[10]  R. Teyssier,et al.  Mass distribution in galaxy clusters: the role of Active Galactic Nuclei feedback , 2010, 1003.4744.

[11]  M. Brüggen,et al.  PROSPECTS OF HIGH-RESOLUTION X-RAY SPECTROSCOPY FOR ACTIVE GALACTIC NUCLEUS FEEDBACK IN GALAXY CLUSTERS , 2009, 0906.2787.

[12]  The structure and dynamical evolution of dark matter haloes , 1996, astro-ph/9603132.

[13]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[14]  J. Jernigan,et al.  High-Resolution X-Ray Spectroscopic Constraints on Cooling-Flow Models for Clusters of Galaxies , 2002, astro-ph/0210662.

[15]  Feedback and metal enrichment in cosmological smoothed particle hydrodynamics simulations ¿ I. A model for chemical enrichment , 2005, astro-ph/0505440.

[16]  Garching,et al.  Smoothed particle hydrodynamics for galaxy‐formation simulations: improved treatments of multiphase gas, of star formation and of supernovae feedback , 2003 .

[17]  Radial profile and lognormal fluctuations of the intracluster medium as the origin of systematic bias in spectroscopic temperature , 2006, astro-ph/0611018.

[18]  A. Evrard,et al.  Detecting Intracluster Gas Motion in Galaxy Clusters: Mock Astro-E2 Observations , 2005, astro-ph/0503281.

[19]  R. Sunyaev,et al.  Width of X-ray lines as a diagnostic of gas motions in cooling flows , 2008 .

[20]  Simulations of AGN feedback in galaxy clusters and groups: impact on gas fractions and the Lx-T scaling relation , 2008, 0808.0494.

[21]  K. Dolag,et al.  An MHD gadget for cosmological simulations , 2008, 0807.3553.

[22]  R. Teyssier,et al.  Jet-regulated cooling catastrophe , 2010, 1004.1851.

[23]  K. Dolag,et al.  Metal and molecule cooling in simulations of structure formation , 2007, 0704.2182.

[24]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – I: Tests of the code , 1993 .

[25]  G. J. Phillips,et al.  A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds , 1985 .

[26]  S. Allen,et al.  Baryons at the Edge of the X-ray–Brightest Galaxy Cluster , 2011, Science.

[27]  S. White,et al.  Feedback and metal enrichment in cosmological SPH simulations – II. A multiphase model with supernova energy feedback , 2006, astro-ph/0604524.

[28]  S. Borgani,et al.  Simulating the effect of active galactic nuclei feedback on the metal enrichment of galaxy clusters , 2009, 0909.0664.

[29]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[30]  On the detectability of turbulence and bulk flows in X-ray clusters , 2003, astro-ph/0310041.

[31]  K. Mukai,et al.  Monte Carlo Simulator and Ancillary Response Generator of Suzaku XRT/XIS System for Spatially Extended Source Analysis , 2006, astro-ph/0610118.

[32]  M. Bruggen,et al.  COSMOLOGICAL MAGNETOHYDRODYNAMIC SIMULATIONS OF CLUSTER FORMATION WITH ANISOTROPIC THERMAL CONDUCTION , 2010, 1010.2277.

[33]  Duane A. Liedahl,et al.  New Calculations of Fe L-Shell X-Ray Spectra in High-Temperature Plasmas , 1995 .

[34]  T. Ohashi,et al.  Suzaku measurement of Abell 2204's intracluster gas temperature profile out to 1800 kpc , 2008, 0806.2920.

[35]  C. D. Vecchia,et al.  Simulations of Magnetic Fields in Filaments , 2005 .

[36]  K. Dolag,et al.  Velocity structure diagnostics of simulated galaxy clusters , 2010, 1012.1606.

[37]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[38]  V. Springel,et al.  Thermal conduction in cosmological SPH simulations , 2004, astro-ph/0401456.

[39]  V. Springel,et al.  Simulations of cosmic-ray feedback by active galactic nuclei in galaxy clusters , 2008, 0801.3285.

[40]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[41]  J. Schaye,et al.  Simulating galactic outflows with kinetic supernova feedback , 2008, 0801.2770.

[42]  J. Peacock,et al.  Simulations of deep pencil-beam redshift surveys , 2000, astro-ph/0011212.

[43]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[44]  L. Moscardini,et al.  X-MAS2: Study Systematics on the ICM Metallicity Measurements , 2007, 0707.2614.

[45]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[46]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[47]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[48]  Daniel J. Price,et al.  Smoothed particle magnetohydrodynamics - III. Multidimensional tests and the B = 0 constraint , 2005, astro-ph/0509083.

[49]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[50]  Garching,et al.  Hydrodynamical simulations of cluster formation with central AGN heating , 2005, astro-ph/0509506.

[51]  Daisuke Nagai,et al.  RESIDUAL GAS MOTIONS IN THE INTRACLUSTER MEDIUM AND BIAS IN HYDROSTATIC MEASUREMENTS OF MASS PROFILES OF CLUSTERS , 2009, 0903.4895.

[52]  M. White,et al.  Hydrodynamic Simulations of the Sunyaev-Zeldovich Effect(s) , 2000, astro-ph/0008133.

[53]  K. Umetsu,et al.  SUZAKU OBSERVATION OF A1689: ANISOTROPIC TEMPERATURE AND ENTROPY DISTRIBUTIONS ASSOCIATED WITH THE LARGE-SCALE STRUCTURE , 2010, 1002.4811.

[54]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[55]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[56]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[57]  C. Crawford,et al.  A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction , 2005, astro-ph/0510476.

[58]  J. Hughes,et al.  X-Ray Temperature and Mass Measurements to the Virial Radius of Abell 1413 with Suzaku , 2010, 1001.5133.

[59]  Marshall W. Bautz,et al.  Suzaku Observations of Abell 1795: Cluster Emission to R200 , 2009 .

[60]  Simulating the metal enrichment of the intracluster medium , 2004, astro-ph/0401576.

[61]  T. Fang,et al.  ROTATION AND TURBULENCE OF THE HOT INTRACLUSTER MEDIUM IN GALAXY CLUSTERS , 2008, 0808.1106.

[62]  D. Lambas,et al.  Chemical evolution using smooth particle hydrodynamical cosmological simulations – I. Implementation, tests and first results , 2000, astro-ph/0007074.

[63]  Simulations of Early Structure Formation: Primordial Gas Clouds , 2003, astro-ph/0301645.

[64]  Chris Biemesderfer,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[65]  Simulating Chandra observations of galaxy clusters , 2003, astro-ph/0310844.

[66]  Turbulence in clusters of galaxies and X-ray line profiles , 2003, astro-ph/0310737.

[67]  Y. Takei,et al.  Erratum: X-Ray Study of the Outer Region of Abell 2142 with Suzaku , 2011, 1106.5653.

[68]  Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev–Zel'dovich effect and the X-ray emission , 2006, astro-ph/0611037.

[69]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[70]  Neal Katz,et al.  Dissipational galaxy formation. II - Effects of star formation , 1992 .

[71]  F. Paerels,et al.  Spatially resolved X-ray spectroscopy of cooling clusters of galaxies , 2003, astro-ph/0309763.