Molten Carbonate Composition Effects on Carbon Electro-Oxidation at a Solid Anode Interface

[1]  J. Tulloch,et al.  Influence of selected coal contaminants on graphitic carbon electro-oxidation for application to the direct carbon fuel cell , 2014 .

[2]  R. Olivares,et al.  Coupled Experimental Study and Thermodynamic Modeling of Melting Point and Thermal Stability of Li2CO3-Na2CO3-K2CO3 Based Salts , 2014 .

[3]  J. Tulloch,et al.  Kinetic Analysis of the Anodic Carbon Oxidation Mechanism in a Molten Carbonate Medium , 2014 .

[4]  J. A. Menéndez,et al.  Effect of carbon type on the performance of a direct or hybrid carbon solid oxide fuel cell , 2014 .

[5]  Jincan Chen,et al.  Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte , 2014 .

[6]  Zhonghua Zhu,et al.  Stability of YSZ and SDC in molten carbonate eutectics for hybrid direct carbon fuel cells , 2014 .

[7]  J. Yin,et al.  A novel electrolyte composed of carbonate and CsVO3–MoO3 for electrochemical oxidation of graphite , 2014 .

[8]  A. Arenillas,et al.  Performance of Direct Carbon Fuel Cells Operated on Coal and Effect of Operation Mode , 2014 .

[9]  Yongdan Li,et al.  Experimental investigation of direct carbon fuel cell fueled by almond shell biochar: Part I. Physico- chemical characterization of the biochar fuel and cell performance examination , 2013 .

[10]  Kazuya Goto,et al.  A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture , 2013 .

[11]  J. Zondlo,et al.  Investigation of anode configurations and fuel mixtures on the performance of direct carbon fuel cells (DCFCs) , 2013 .

[12]  Juhun Song,et al.  Thermal stability and viscosity behaviors of hot molten carbonate mixtures , 2013 .

[13]  Koichi Terasaka,et al.  Mass transfer in molten salt and suspended molten salt in bubble column , 2013 .

[14]  J. Yin,et al.  Significant improvement of electrooxidation performance of carbon in molten carbonates by the introduction of transition metal oxides , 2013 .

[15]  T. M. Gür,et al.  Critical review of carbon conversion in "carbon fuel cells". , 2013, Chemical reviews.

[16]  Gyungmin Choi,et al.  Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system , 2013 .

[17]  Zhonghua Zhu,et al.  Optimization of a direct carbon fuel cell for operation below 700 °C , 2013 .

[18]  Z. Chao,et al.  Dynamic study of Li intercalation into graphite by in situ high energy synchrotron XRD , 2013 .

[19]  R. Olivares,et al.  The Thermal Stability of Molten Lithium–Sodium–Potassium Carbonate and the Influence of Additives on the Melting Point , 2012 .

[20]  S. Badwal,et al.  A comprehensive review of direct carbon fuel cell technology. , 2012 .

[21]  M. Ikura,et al.  Performance of direct carbon fuel cell , 2011 .

[22]  D. Rutledge Estimating long-term world coal production with logit and probit transforms , 2011 .

[23]  Shaomin Liu,et al.  Factors That Determine the Performance of Carbon Fuels in the Direct Carbon Fuel Cell , 2008 .

[24]  Michael Epstein,et al.  Solar Gasification of Biomass: A Molten Salt Pyrolysis Study , 2004 .

[25]  Nicholas G. Midgley,et al.  Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method , 2000 .

[26]  J. Calo,et al.  A heterogeneous surface model for the “steady-state” kinetics of the boudouard reaction , 1987 .

[27]  A. Pelton,et al.  Calculation of phase diagrams and thermodynamic properties of 14 additive and reciprocal ternary systems containing Li2CO3, Na2CO3, K2CO3, Li2SO4, Na2SO4, K2SO4, LiOH, NaOH, and KOH , 1984 .

[28]  D. Mckee Mechanisms of the alkali metal catalysed gasification of carbon , 1983 .

[29]  G. Janz,et al.  Solid-Liquid Phase Equilibria for Mixtures of Lithium, Sodium, and Potassium Carbonates , 1961 .