Lightning Related Transient Luminous Events at High Altitude in the Earth’s Atmosphere: Phenomenology, Mechanisms and Effects

This paper presents a literature survey on the recent developments related to experimental and modeling studies of transient luminous events (TLEs) in the middle atmosphere termed elves, sprites and jets that are produced in association with thunderstorm activity at tropospheric altitudes. The primary emphasis is placed on publications that appeared in refereed literature starting from year 2008 and up to the present date. The survey covers general phenomenology of TLEs and their relationships to characteristics of individual thunderstorms and lightning, physical mechanisms and modeling of TLEs, past, present and future orbital observations of TLEs, and their chemical, energetic and electric effects on local and global scales.

[1]  Umran S. Inan,et al.  Rapid lateral expansion of optical luminosity in lightning‐induced ionospheric flashes referred to as ‘elves' , 1997 .

[2]  W. Hundsdorfer,et al.  Branching of negative streamers in free flight. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  H. Christian,et al.  Lightning mapping observation of a terrestrial gamma‐ray flash , 2010 .

[4]  M. Shneider,et al.  Analysis of UV flashes of millisecond scale detected by a low‐orbit satellite , 2010 .

[5]  G. N. Petrova,et al.  Physical mechanisms for the development of lightning discharges between a thundercloud and the ionosphere , 1999 .

[6]  P. Williams,et al.  Two‐dimensional studies of streamers in gases , 1987 .

[7]  V. Pasko Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere , 2008 .

[8]  Mikhail N. Shneider,et al.  Model of UV flashes due to gigantic blue jets , 2008 .

[9]  Yukihiro Takahashi,et al.  Electric fields and electron energies inferred from the ISUAL recorded sprites , 2005 .

[10]  R. Hsu,et al.  Further investigations of lightning‐induced transient emissions in the OH airglow layer , 2010 .

[11]  Ute Ebert,et al.  Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning , 2010 .

[12]  N. Zabotin,et al.  Role of meteoric dust in sprite formation , 2001 .

[13]  Earle R. Williams,et al.  The tripole structure of thunderstorms , 1989 .

[14]  T. Clarmann,et al.  MIPAS: an instrument for atmospheric and climate research , 2007 .

[15]  Steffen Beirle,et al.  NOx production by lightning estimated with GOME , 2004 .

[16]  Ningyu Liu,et al.  Effects of photoionization on propagation and branching of positive and negative streamers in sprites , 2004 .

[17]  D. Hampton,et al.  Preliminary results from the Sprites94 aircraft campaign: 1 , 1995 .

[18]  M. Shneider,et al.  On the mechanism of blue jet formation and propagation , 2006 .

[19]  Matthew G. McHarg,et al.  Observations of streamer formation in sprites , 2007 .

[20]  M. Hayakawa,et al.  Comparison of time delays of sprites induced by winter lightning flashes in the Japan Sea with those in the Pacific Ocean , 2009 .

[21]  T. Neubert,et al.  More evidence for a one-to-one correlation between Sprites and Early VLF perturbations , 2010 .

[22]  M. Cernak,et al.  Effect of cathode surface properties on glow-to-arc transition in a short positive corona gap in ambient air , 1995 .

[23]  E. Blanc,et al.  Main results of LSO (Lightning and sprite observations) on board of the international space station , 2007 .

[24]  Umran S. Inan,et al.  Identification of sprites and elves with intensified video and broadband array photometry , 2001 .

[25]  M. Hayakawa,et al.  Computer simulations on the initiation and morphological difference of Japan winter and summer sprites , 2008 .

[26]  Ute Ebert,et al.  Streamers, sprites, leaders, lightning: from micro- to macroscales , 2008, 0811.2075.

[27]  S. Cummer,et al.  Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes , 2011 .

[28]  U. Inan,et al.  Two‐dimensional frequency domain modeling of lightning EMP‐induced perturbations to VLF transmitter signals , 2010 .

[29]  Y. Takahashi,et al.  ISUAL far‐ultraviolet events, elves, and lightning current , 2010 .

[30]  M. Ridolfi,et al.  Seeking sprite-induced signatures in remotely sensed middle atmosphere NO2: latitude and time variations , 2008 .

[31]  E. Mareev,et al.  On the role of transient currents in the global electric circuit , 2008 .

[32]  D. Sentman,et al.  Chemical effects of weak electric fields in the trailing columns of sprite streamers , 2009 .

[33]  E. Williams,et al.  THE MICROPHYSICAL AND ELECTRICAL PROPERTIES OF SPRITE-PRODUCING THUNDERSTORMS , 2006 .

[34]  M. N. Shneiderc Leader – streamers nature of blue jets , 2007 .

[35]  C. Rodger Red sprites, upward lightning, and VLF perturbations , 1999 .

[36]  Thomas Farges,et al.  Nadir observations of sprites from the International Space Station , 2004 .

[37]  V. Pasko THE ORETICAL MODELING OF SPRITES AND JETS , 2006 .

[38]  Yukihiro Takahashi,et al.  Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite , 2003 .

[39]  U. Inan Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes , 2002 .

[40]  Yoav Yair,et al.  Sprite observations from the space shuttle during the Mediterranean Israeli dust experiment (MEIDEX) , 2003 .

[41]  R. Hsu,et al.  Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses , 2007 .

[42]  H. Salazar,et al.  Ultraviolet radiation detector of the MSU research educational microsatellite Universitetskii-Tat’yana , 2006 .

[43]  V. Mazur,et al.  Model of electric charges in thunderstorms and associated lightning , 1998 .

[44]  H. Rowland Theories and simulations of elves, sprites and blue jets , 1998 .

[45]  Umran S. Inan,et al.  Heating, ionization and upward discharges in the mesosphere, due to intense quasi‐electrostatic thundercloud fields , 1995 .

[46]  M. Sato,et al.  Global sprite occurrence locations and rates derived from triangulation of transient Schumann resonance events , 2003 .

[47]  V. Rakov,et al.  Are lightning M components capable of initiating sprites and sprite halos , 2007 .

[48]  Hans D. Betz,et al.  Lightning: Principles, Instruments and Applications , 2008 .

[49]  C. Price,et al.  Optical observations of transient luminous events associated with winter thunderstorms near the coast of Israel , 2009 .

[50]  C. Price,et al.  ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms , 2007 .

[51]  T. H. Allin,et al.  The Planetary rate of sprite events , 2006 .

[52]  M. McHarg,et al.  Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high-speed video observations , 2008 .

[53]  Georgios Veronis,et al.  Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders , 2006 .

[54]  G. Milikh,et al.  Blue Jets: Upward Lightning , 2008 .

[55]  Umran S. Inan,et al.  Characteristics of mesospheric optical emissions produced by lightning discharges , 1999 .

[56]  Yoshihiro Sakamoto,et al.  Science Goal and Mission Status of JEM-GLIMS , 2009 .

[57]  Three-dimensional EM computer simulation on sprite initiation above a horizontal lightning discharge , 2009 .

[58]  U. Inan,et al.  Telescopic imaging of sprites , 2000 .

[59]  Z. Donkó,et al.  Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature , 2009 .

[60]  T. E. Nelson,et al.  Upward Electrical Discharges From Thunderstorm Tops , 2003 .

[61]  Matthew G. McHarg,et al.  Altitude resolved sprite spectra with 3 ms temporal resolution , 2007 .

[62]  Yoav Yair,et al.  New observations of sprites from the space shuttle , 2004 .

[63]  J. Joseph,et al.  Transient airglow enhancements observed from the space shuttle Columbia during the MEIDEX sprite campaign , 2004 .

[64]  P. Stubbe,et al.  Problems of blue jet theories , 1998 .

[65]  O. A. van der Velde,et al.  Lightning development associated with two negative gigantic jets , 2011 .

[66]  Yukihiro Takahashi,et al.  Halos generated by negative cloud‐to‐ground lightning , 2007 .

[67]  H. Christian,et al.  Charge transfer and in‐cloud structure of large‐charge‐moment positive lightning strokes in a mesoscale convective system , 2009 .

[68]  Umran S. Inan,et al.  ELF radiation produced by electrical currents in sprites , 1998 .

[69]  J. Montanyà,et al.  High‐speed intensified video recordings of sprites and elves over the western Mediterranean Sea during winter thunderstorms , 2010 .

[70]  U. Inan,et al.  Electrical discharge from a thundercloud top to the lower ionosphere , 2002, Nature.

[71]  V. Klimenko,et al.  Energetic Particles Impacting the Upper Atmosphere in Connection with Transient Luminous Event Phenomena: Russian Space Experiment Programs , 2009 .

[72]  S. Cummer,et al.  Testing sprite initiation theory using lightning measurements and modeled electromagnetic fields , 2007 .

[73]  D. Hampton,et al.  Blue Jets: their relationship to lightning and very large hailfall, and their physical mechanisms for their production , 1998 .

[74]  P. Krehbiel,et al.  Modeling of thundercloud screening charges: Implications for blue and gigantic jets , 2010 .

[75]  V. Pasko,et al.  Mechanism of inverted‐chirp infrasonic radiation from sprites , 2010 .

[76]  James P. Cipriani,et al.  Lightning‐generated NOx seen by the Ozone Monitoring Instrument during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TC4) , 2010 .

[77]  U. Ebert,et al.  Stereo-photography of streamers in air , 2008, 0802.3639.

[78]  V. Pasko Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges , 2007 .

[79]  Marco Prevedelli,et al.  GMTR: two-dimensional geo-fit multitarget retrieval model for michelson interferometer for passive atmospheric sounding/environmental satellite observations. , 2006, Applied optics.

[80]  T. E. Nelson,et al.  Submillisecond imaging of sprite development and structure , 2006 .

[81]  M. Bailey,et al.  NOx production in laboratory discharges simulating blue jets and red sprites , 2009 .

[82]  M. Bailey,et al.  Reply to comment by S. Nijdam et al. on “NOx production in laboratory discharges simulating blue jets and red sprites” , 2010 .

[83]  G. Naidis Positive and negative streamers in air: velocity-diameter relation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Matthew G. McHarg,et al.  High time-resolution sprite imaging: observations and implications , 2008 .

[85]  Lou‐Chuang Lee,et al.  Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets , 2009 .

[86]  Y. Kasai,et al.  Chemistry of sprite discharges through ion-neutral reactions , 2008 .

[87]  L. Tong,et al.  Simulation of gigantic jets propagating from the top of thunderclouds to the ionosphere , 2005 .

[88]  H. Salazar,et al.  UV radiation from the atmosphere: Results of the MSU “Tatiana” satellite measurements , 2005 .

[89]  U. Ebert,et al.  Sprites in varying air density: Charge conservation, glowing negative trails and changing velocity , 2010 .

[90]  T. Farges,et al.  OBSERVATIONS OF SPRITES FROM SPACE AT THE NADIR: THE LSO (LIGHTNING AND SPRITE OBSERVATIONS) EXPERIMENT ON BOARD OF THE INTERNATIONAL SPACE STATION , 2006 .

[91]  Lou‐Chuang Lee,et al.  Modeling elves observed by FORMOSAT-2 satellite , 2007 .

[92]  E. Marode,et al.  The scaling of the streamer-to-arc transition in a positive point-to-plane gap with pressure , 1992 .

[93]  A. Luque,et al.  Electrical conductivity in sprite streamer channels , 2010 .

[94]  M. Rycroft,et al.  Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit , 2010 .

[95]  Ute Ebert,et al.  Emergence of sprite streamers from screening-ionization waves in the lower ionosphere , 2009 .

[96]  S. Cummer,et al.  Unusually intense continuing current in lightning produces delayed mesospheric breakdown , 2001 .

[97]  Y. Takahashi,et al.  Parameterisation of the chemical effect of sprites in the middle atmosphere , 2008 .

[98]  F. Leblanc,et al.  Planetary Atmospheric Electricity , 2008 .

[99]  O. Chanrion,et al.  Production of runaway electrons by negative streamer discharges , 2010 .

[100]  Chuntao Liu,et al.  Diurnal Variations of Global Thunderstorms and Electrified Shower Clouds and Their Contribution to the Global Electrical Circuit , 2010 .

[101]  Steven A. Cummer,et al.  Analysis of the first gigantic jet recorded over continental North America , 2007 .

[102]  Lou‐Chuang Lee,et al.  Assessment of sprite initiating electric fields and quenching altitude of a1Πg state of N2 using sprite streamer modeling and ISUAL spectrophotometric measurements , 2009 .

[103]  Olivier Chanrion,et al.  A PIC-MCC code for simulation of streamer propagation in air , 2008, J. Comput. Phys..

[104]  Umran S. Inan,et al.  Fractal structure of sprites , 2000 .

[105]  Victor P. Pasko,et al.  Diffuse and streamer regions of sprites , 2002 .

[106]  Thunderstorms, Lightning, Sprites and Magnetospheric Whistler-Mode Radio Waves , 2008, 0906.0429.

[107]  J. Montanyà,et al.  Spatial and temporal evolution of horizontally extensive lightning discharges associated with sprite‐producing positive cloud‐to‐ground flashes in northeastern Spain , 2010 .

[108]  R. Nemzek,et al.  Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System , 1990, Science.

[109]  V. Pasko Atmospheric physics: Electric jets , 2003, Nature.

[110]  Victor P. Pasko,et al.  Recent advances in theory of transient luminous events , 2010 .

[111]  U. Inan,et al.  High‐speed measurements of small‐scale features in sprites: Sizes and lifetimes , 2006 .

[112]  Umran S. Inan,et al.  Sprites produced by quasi‐electrostatic heating and ionization in the lower ionosphere , 1997 .

[113]  Ningyu Liu,et al.  Model of sprite luminous trail caused by increasing streamer current , 2010 .

[114]  W. Hundsdorfer,et al.  The multiscale nature of streamers , 2006, physics/0604023.

[115]  V. Pasko,et al.  Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events , 2011 .

[116]  E. Williams,et al.  The global electrical circuit: A review , 2009 .

[117]  Eugene M. Wescott,et al.  Time resolved N2 triplet state vibrational populations and emissions associated with red sprites , 1998 .

[118]  H. Christian Global Frequency and Distribution of Lightning as Observed From Space , 2001 .

[119]  Ningyu Liu,et al.  Modeling studies of NO‐γ emissions of sprites , 2007 .

[120]  TARANIS—A Satellite Project Dedicated to the Physics of TLEs and TGFs , 2008 .

[121]  Vladimir A. Rakov,et al.  M‐component mode of charge transfer to ground in lightning discharges , 2001 .

[122]  M. Hayakawa,et al.  Computer simulations on sprite initiation for realistic lightning models with higher‐frequency surges , 2009 .

[123]  E. Symbalisty,et al.  Physical Processes Related to Discharges in Planetary Atmospheres , 2008 .

[124]  S. Cummer,et al.  Lightning charge moment changes in U.S. High Plains thunderstorms , 2004 .

[125]  M. Rycroft,et al.  The contribution of sprites to the global atmospheric electric circuit , 2006 .

[126]  Y. Takahashi,et al.  Beta‐type stepped leader of elve‐producing lightning , 2005 .

[127]  Lou‐Chuang Lee,et al.  SPACECRAFT BASED STUDIES OF TRANSIENT LUMINOUS EVENTS , 2006 .

[128]  Matthew G. McHarg,et al.  Plasma chemistry of sprite streamers , 2007 .

[129]  S. Cummer,et al.  Implications of lightning charge moment changes for sprite initiation , 2005 .

[130]  Patrick Minnis,et al.  Evaluation of Satellite-Based Upper Troposphere Cloud Top Height Retrievals in Multilayer Cloud Conditions During TC4 , 2010 .

[131]  T. Neubert On Sprites and Their Exotic Kin , 2003, Science.

[132]  P. Krehbiel,et al.  Three‐dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations , 2007 .

[133]  C. Groot‐Hedlin Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere. , 2008 .

[134]  Y. Takahashi,et al.  Simultaneous radio and satellite optical measurements of high-altitude sprite current and lightning continuing current , 2006 .

[135]  T. Bell,et al.  Mechanism of ELF radiation from sprites , 1998 .

[136]  E. Dewan,et al.  Simultaneous Observations of Mesospheric Gravity Waves and Sprites Generated by a Midwestern Thunderstorm , 2003 .

[137]  Mikhail N. Shneider,et al.  Long streamers in the upper atmosphere above thundercloud , 1998 .

[138]  Lou‐Chuang Lee,et al.  Absolute optical energy of sprites and its relationship to charge moment of parent lightning discharge based on measurement by ISUAL/AP , 2010 .

[139]  Andre Agneray,et al.  Pressure effects on the development of an electric discharge in non-uniform fields , 2001 .

[140]  Y. Takahashi,et al.  On the Global Occurrence and Impacts of Transient Luminous Events (TLEs) , 2009 .

[141]  Torsten Neubert,et al.  ASIM—an Instrument Suite for the International Space Station , 2009 .

[142]  E. Williams Problems in lightning physics—the role of polarity asymmetry , 2006 .

[143]  H. Fukunishi,et al.  Roles of the EMP and QE field in the generation of columniform sprites , 2004 .

[144]  H. Fukunishi,et al.  Theoretical criterion of charge moment change by lightning for initiation of sprites , 2006 .

[145]  Ulrich Schumann,et al.  The global lightning-induced nitrogen oxides source , 2007 .

[146]  Ningyu Liu,et al.  NO-γ emissions from streamer discharges: direct electron impact excitation versus resonant energy transfer , 2010 .

[147]  H. Edens,et al.  Upward electrical discharges from thunderstorms , 2007 .

[148]  F. J. Gordillo-Vazquez,et al.  Air plasma kinetics under the influence of sprites , 2008 .

[149]  T. Bell,et al.  Heating and ionization of the lower ionosphere by lightning , 1991 .

[150]  U. Inan,et al.  Elves and associated electron density changes due to cloud‐to‐ground and in‐cloud lightning discharges , 2010 .

[151]  Steven A. Cummer,et al.  Lightning charge moment changes for the initiation of sprites , 2002 .

[152]  Richard J. Blakeslee,et al.  The role of the space shuttle videotapes in the discovery of sprites, jets and elves , 1998 .

[153]  Mark A. Stanley,et al.  High speed video of initial sprite development , 1999 .

[154]  Y. C. Wang,et al.  Gigantic jets between a thundercloud and the ionosphere , 2003, Nature.

[155]  S. Cummer,et al.  Estimation of electric charge in sprites from optical and radio observations , 2011 .

[156]  Matthew J. Heavner,et al.  Preliminary results from the Sprites94 Aircraft Campaign: 2. Blue jets , 1995 .

[157]  Umran S. Inan,et al.  Observations of the relationship between sprite morphology and in-cloud lightning processes , 2006 .

[158]  R. Hsu,et al.  Early VLF perturbations observed in association with elves , 2006 .

[159]  Eduard M. Bazelyan,et al.  Lightning Physics and Lightning Protection , 2000 .

[160]  Chun‐Chieh Wu,et al.  Controlling synoptic‐scale factors for the distribution of transient luminous events , 2010 .

[161]  F Longo,et al.  Terrestrial gamma-ray flashes as powerful particle accelerators. , 2011, Physical review letters.

[162]  A. Bourdon,et al.  Air‐density‐dependent model for analysis of air heating associated with streamers, leaders, and transient luminous events , 2010 .

[163]  Yukihiro Takahashi,et al.  Global distributions and occurrence rates of transient luminous events , 2008 .

[164]  B. Vonnegut,et al.  Lightning induced brightening in the airglow layer , 1992 .

[165]  Yukihiro Takahashi,et al.  Elves : Lightning-induced transient luminous events in the lower ionosphere , 1996 .

[166]  Heinz W. Kasemir,et al.  A Contribution to the Electrostatic Theory of a Lightning Discharge , 1960 .

[167]  Walter A. Lyons,et al.  THE METEOROLOGY OF TRANSIENT LUMINOUS EVENTS-AN INTRODUCTION AND OVERVIEW , 2006 .

[168]  Matthew J. Heavner,et al.  N 2( B 3 ? g) and N 2 +( A 2 ? u) vibrational distributions observed in sprites , 2003 .

[169]  S. Cummer,et al.  Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe , 2010 .

[170]  Matthew G. McHarg,et al.  Observed emission rates in sprite streamer heads , 2007 .

[171]  Victor P. Pasko,et al.  Three-dimensional modeling of blue jets and blue starters , 2001 .

[172]  T. E. Nelson,et al.  Coordinated analysis of delayed sprites with high-speed images and remote electromagnetic fields , 2008 .

[173]  J. Peterson,et al.  Influence of the Columbia River plume on cross-shelf transport of zooplankton , 2009 .

[174]  S. Beirle,et al.  Direct satellite observation of lightning-produced NO x , 2010 .

[175]  H. Salazar,et al.  Ultraviolet flashes in the equatorial region of the Earth , 2005 .

[176]  U. Ebert,et al.  Comment on "NOx production in laboratory discharges simulating blue jets and red sprites" by H. Peterson et al , 2010, 1012.3838.

[177]  G. Guo,et al.  Reply to the comment , 1997, quant-ph/9710014.

[178]  D. Sentman,et al.  Sprites, Blue Jets, and Elves: Optical Evidence of Energy Transport Across the Stratopause , 2013 .

[179]  Y. Yair Observations of Transient Luminous Events from Earth Orbit , 2006 .

[180]  D. C. Cartwright,et al.  Role of excited N2 in the production of nitric oxide , 2007 .

[181]  H. Y. Lee,et al.  Program of transient UV event research at Tatiana-2 satellite , 2010 .

[182]  S. Cummer Current moment in sprite-producing lightning , 2003 .

[183]  Rainer Sandau,et al.  Small Satellite Missions for Earth Observation , 2010 .

[184]  Marco Ridolfi,et al.  Seeking sprite‐induced signatures in remotely sensed middle atmosphere NO2 , 2008 .

[185]  M. McHarg,et al.  Sprite initiation altitude measured by triangulation , 2010 .

[186]  Lou‐Chuang Lee,et al.  Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT‐2 satellite , 2006 .

[187]  Mikhail N. Shneider,et al.  Streamer- and leader-like processes in the upper atmosphere: Models of red sprites and blue jets , 2010 .

[188]  M. Rycroft,et al.  "Sprites, Elves and Intense Lightning Discharges" , 2006 .

[189]  T. E. Nelson,et al.  SUPERCELLS AND SPRITES , 2008 .

[190]  Ningyu Liu,et al.  Molecular nitrogen LBH band system far‐UV emissions of sprite streamers , 2005 .

[191]  J. Rumble,et al.  Extended Boltzmann analysis of electron swarm experiments , 1981 .

[192]  Kerry Gallagher,et al.  Reply to comment regarding the ICE-hypothesis , 2009 .

[193]  C. Price,et al.  Indication for circular organization of column sprite elements associated with Eastern Mediterranean winter thunderstorms , 2009 .

[194]  Kazuya Yoshida,et al.  SPRITE-SAT: A University Small Satellite for Observation of High-Altitude Luminous Events , 2010 .

[195]  Rachel J. Steiner,et al.  Recent Results from Studies of Electric Discharges in the Mesosphere , 2008 .

[196]  C. Rodger,et al.  Significance of transient luminous events to neutral chemistry: Experimental measurements , 2008 .

[197]  Á. Mika,et al.  Modeling the relaxation of early VLF perturbations associated with transient luminous events , 2009 .

[198]  T. E. Nelson,et al.  The Meteorological and Electrical Structure of TLE-Producing Convective Storms , 2009 .

[199]  U. Inan,et al.  Observations of decameter-scale morphologies in sprites , 2003 .

[200]  Y. Hiraki Effects of ion–neutral chemical reactions on dynamics of lightning-induced electric field , 2009 .

[201]  V. Rakov,et al.  On the NOx production by laboratory electrical discharges and lightning , 2009 .

[202]  Umran S. Inan,et al.  A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges , 2010 .

[203]  T. Bell,et al.  Spatial structure of sprites , 1998 .

[204]  V. Rakov,et al.  Lightning: Physics and Effects , 2007 .

[205]  Bardsley,et al.  Simulation of negative-streamer dynamics in nitrogen. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[206]  Lou‐Chuang Lee,et al.  D region ionization by lightning-induced electromagnetic pulses , 2005 .

[207]  Alejandro Luque,et al.  Sprite beads originating from inhomogeneities in the mesospheric electron density , 2011 .

[208]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.

[209]  V. Pasko,et al.  Effects of spatial non‐uniformity of streamer discharges on spectroscopic diagnostics of peak electric fields in transient luminous events , 2010 .

[210]  B. Vonnegut,et al.  Observations of lightning in the stratosphere , 1995 .

[211]  M. Cho,et al.  Temporal‐spatial modeling of electron density enhancement due to successive lightning strokes , 2010 .

[212]  T. Bell,et al.  Sprites as Luminous Columns of Ionization Produced by Quasi-Electrostatic Thundercloud Fields , 1996 .

[213]  R. P. Lin,et al.  Terrestrial Gamma-Ray Flashes Observed up to 20 MeV , 2005, Science.

[214]  Lou‐Chuang Lee,et al.  Gigantic jets with negative and positive polarity streamers , 2010 .

[215]  Matthew J. Heavner,et al.  New evidence for the brightness and ionization of blue starters and blue jets , 2001 .

[216]  C T R Wilson,et al.  The electric field of a thundercloud and some of its effects , 1924 .

[217]  Yukihiro Takahashi,et al.  Electric fields and electron energies in sprites and temporal evolutions of lightning charge moment , 2008 .

[218]  T. H. Allin,et al.  Identification of infrasound produced by sprites during the Sprite2003 campaign , 2005 .

[219]  Henry E. Bass,et al.  Atmospheric absorption in the atmosphere up to 160 km , 2004 .

[220]  F J Gordillo-V Air plasma kinetics under the influence of sprites , 2008 .

[221]  T. Farges,et al.  Characteristics of infrasound from lightning and sprites near thunderstorm areas , 2010 .

[222]  T. E. Nelson,et al.  Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet , 2009 .

[223]  Steven A. Cummer,et al.  Comparison of sprite initiation altitudes between observations and models , 2011 .

[224]  Jianqi Qin,et al.  On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity , 2011 .

[225]  Walter A. Lyons,et al.  Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems , 1996 .

[226]  Willem Hundsdorfer,et al.  3D hybrid computations for streamer discharges and production of runaway electrons , 2009, 0907.0555.

[227]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[228]  R. Hsu,et al.  Electric field transition between the diffuse and streamer regions of sprites estimated from ISUAL/array photometer measurements , 2006 .

[229]  D. Siskind,et al.  Atmospheric science across the stratopause , 2000 .

[230]  Yukihiro Takahashi,et al.  Radiative emission and energy deposition in transient luminous events , 2008 .

[231]  E. A. Mareev Global electric circuit research: achievements and prospects , 2010 .