All-optical synthesis of an arbitrary linear transformation using diffractive surfaces

[1]  A. Ozcan,et al.  Spectrally encoded single-pixel machine vision using diffractive networks , 2021, Science Advances.

[2]  L. Onural,et al.  Generation of a polarized optical field from a given scalar field for wide-viewing-angle holographic displays , 2021 .

[3]  Gordon Wetzstein,et al.  Inference in artificial intelligence with deep optics and photonics , 2020, Nature.

[4]  Deniz Mengu,et al.  Scale-, shift- and rotation-invariant diffractive optical networks , 2020, ArXiv.

[5]  Dimitrios L. Sounas,et al.  Discrete space optical signal processing , 2020 .

[6]  Farzad Zangeneh-Nejad,et al.  Analogue computing with metamaterials , 2020, Nature Reviews Materials.

[7]  Aydogan Ozcan,et al.  Ensemble learning of diffractive optical networks , 2020, Light: Science & Applications.

[8]  V. Sorger,et al.  Massively parallel amplitude-only Fourier neural network , 2020, AI and Optical Data Sciences II.

[9]  A. Ozcan,et al.  All-optical information-processing capacity of diffractive surfaces , 2020, Light: Science & Applications.

[10]  Muhammed Veli,et al.  Terahertz pulse shaping using diffractive surfaces , 2020, Nature communications.

[11]  Eirini Kakkava,et al.  Computer generated optical volume elements by additive manufacturing , 2020, Nanophotonics.

[12]  Aydogan Ozcan,et al.  Misalignment resilient diffractive optical networks , 2020, ArXiv.

[13]  A. Ozcan,et al.  Design of task-specific optical systems using broadband diffractive neural networks , 2019, Light: Science & Applications.

[14]  Yue Jiang,et al.  All-optical neural network with nonlinear activation functions , 2019, Optica.

[15]  N. Engheta,et al.  Inverse-designed metastructures that solve equations , 2019, Science.

[16]  Haiyan Wang,et al.  Dynamic 2D implementation of 3D diffractive optics , 2018, Optica.

[17]  C. Aggarwal Neural Networks and Deep Learning: A Textbook , 2018 .

[18]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[19]  Levent Onural,et al.  Power Spectrum Equalized Scalar Representation of Wide-Angle Optical Field Propagation , 2018, Journal of Mathematical Imaging and Vision.

[20]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[21]  A. Ribeiro,et al.  Demonstration of a 4 × 4-port self-configuring universal linear optical component , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[22]  H. Ozaktas,et al.  Evaluation of the validity of the scalar approximation in optical wave propagation using a systems approach and an accurate digital electromagnetic model , 2016 .

[23]  Demetri Psaltis,et al.  Optical Computing: Past and Future , 2016 .

[24]  Bahram Jalali,et al.  Analog optical computing , 2015, Nature Photonics.

[25]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[26]  David A. B. Miller,et al.  Self-configuring universal linear optical component [Invited] , 2013, 1303.4602.

[27]  Serge Massar,et al.  All-optical Reservoir Computing , 2012, Optics express.

[28]  X. Zhang,et al.  Dielectric Optical Cloak , 2009, 0904.3602.

[29]  J. Azaña,et al.  Photonic temporal integrator for all-optical computing. , 2008, Optics express.

[30]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[31]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[32]  Haldun M. Özaktas,et al.  The fractional fourier transform , 2001, 2001 European Control Conference (ECC).

[33]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[34]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[35]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[36]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[37]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[38]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[39]  H. Price Past and future , 1990, Nature.

[40]  F. Laeri,et al.  Analog Optical Computing , 1987, Other Conferences.

[41]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[42]  A.A. Sawchuk,et al.  Digital optical computing , 1984, Proceedings of the IEEE.

[43]  R A Athale,et al.  Optical matrix-matrix multiplier based on outer product decomposition. , 1982, Applied optics.

[44]  Joseph W. Goodman,et al.  Method for performing complex-valued linear operations on complex-valued data using incoherent light. , 1977, Applied optics.

[45]  J. Goodman Introduction to Fourier optics , 1969 .

[46]  Iu,et al.  All-optical neural network with nonlinear activation functions: supplementary material , 2019 .

[47]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[48]  Fabrice Labeau,et al.  Discrete Time Signal Processing , 2004 .

[49]  J W Goodman,et al.  Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. , 1978, Optics letters.