Thin Pt films on the polar SrTiO3(111) surface: an experimental and theoretical study

Abstract We have examined the growth of thin Pt films on the polar SrTiO 3 (1 1 1) surface using both experimental and theoretical methods. Pt films were grown on both as-received and treated substrates using electron-beam evaporation, and then were characterized with X-ray and low-energy electron diffraction and atomic force microscopy. The nature of the substrate surface strongly influences the crystallinity and microstructure of the Pt films. We find that for well-treated, crystalline SrTiO 3 (1 1 1) substrates we obtain crystalline Pt(1 1 1) films. In addition, the first few layers strongly replicate the surface structure of the substrate. XRD results demonstrate that even the best films exhibit two distinct in-plane domains separated by 60°, equivalent to the existence of inversion domains. Density functional theory (DFT) calculations were performed for 1–4 monolayers of Pt on both terminations of SrTiO 3 (1 1 1). These calculations find that two energetically equivalent stacking sequences are possible for the second monolayer of Pt, corresponding to the observed 60° domains. We propose that these stacking faults are the source of the observed domains in crystalline Pt(1 1 1) films grown on polar SrTiO 3 (1 1 1) surfaces. Finally, the DFT calculations corroborate the observation that the structures and growth modes of the first few monolayers are coupled strongly to the substrate, yet the films quickly relax to bulk-like Pt arrangements and homoepitaxial growth modes.

[1]  T. Michely,et al.  The homoepitaxial growth of Pt on Pt(111) studied with STM , 1992 .

[2]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[3]  P. J. Møller,et al.  Selective growth of a MgO(100)-c(2×2) superstructure on a SrTiO3(100)-(2×2) substrate , 1999 .

[4]  M. Morcrette,et al.  Epitaxial growth of Pt and oxide multilayers on MgO by laser ablation , 2000 .

[5]  Lee,et al.  Ab initio molecular dynamics for d-electron systems: Liquid copper at 1500 K. , 1992, Physical review letters.

[6]  E. Carter,et al.  Adhesion of ultrathin ZrO2(111) films on Ni(111) from first principles , 2001 .

[7]  G. Rohrer,et al.  Surface engineering along the close-packed direction of SrTiO3 , 2001 .

[8]  P. McIntyre,et al.  Orientation selection in thin platinum films on (001) MgO , 1995 .

[9]  A. Freeman,et al.  STRUCTURAL AND ELECTRONIC PROPERTIES OF TRANSITION-METAL/BATIO3(001) INTERFACES , 1997 .

[10]  E. Carter,et al.  Weak bonding of alumina coatings on Ni(1 1 1) , 2001 .

[11]  G. Thornton,et al.  Stability of polar oxide surfaces. , 2001, Physical review letters.

[12]  Kunkel,et al.  Reentrant layer-by-layer growth during molecular-beam epitaxy of metal-on-metal substrates. , 1990, Physical review letters.

[13]  Hans-Joachim Freund,et al.  Palladium Nanocrystals on Al 2 O 3 : Structure and Adhesion Energy , 1999 .

[14]  A. Bogicevic,et al.  Role of surface vacancies and water products in metal nucleation: Pt/MgO(100) , 1999 .

[15]  A. Bogicevic,et al.  Variations in the Nature of Metal Adsorption on Ultrathin Al 2 O 3 Films , 1999 .

[16]  T. Michely,et al.  Nucleation of homoepitaxial films grown with ion assistance on Pt(111) , 1995 .

[17]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[18]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[19]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[20]  T. Yoshimura,et al.  The initial stage of BaTiO3 epitaxial films on etched and annealed SrTiO3 substrates , 1997 .

[21]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[22]  J. Horwitz,et al.  The preparation of epitaxial platinum films by pulsed laser deposition , 1992 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  C. Elsässer,et al.  Thin Pd films on SrTiO3 (001) substrates: ab initio local-density-functional theory , 2002 .

[25]  N. M. Harrison,et al.  The stability of polar oxide surfaces: The interaction of H2O with ZnO(0001) and ZnO(0001̄) , 2001 .

[26]  C. Noguera,et al.  Characteristics of Pd deposition on the MgO(111) surface , 1999 .

[27]  H. Jónsson,et al.  Diffusion mechanisms relevant to metal crystal growth : Pt/Pt(111) , 1994 .

[28]  C. Elsässer,et al.  Microscopic structure and bonding at the Pd/SrTiO3 (001) Interface an ab-initio local-density-functional study , 2001 .

[29]  N. Erdman,et al.  The structure and chemistry of the TiO2-rich surface of SrTiO3 (001) , 2002, Nature.

[30]  I. Stensgaard,et al.  Copper clusters on Al2O3/NiAl(110) studied with STM , 2001 .

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  Donald J. Siegel,et al.  Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC , 2002 .

[33]  B. Lundqvist,et al.  LOW-SYMMETRY DIFFUSION BARRIERS IN HOMOEPITAXIAL GROWTH OF AL(111) , 1998 .

[34]  C. Noguera,et al.  Polar oxide surfaces , 2000 .

[35]  T. Gemming,et al.  Growth of platinum on TiO2- and SrO-terminated SrTiO3(100) , 2000 .

[36]  J. Carlsson Electronic structure of the polar ZnO{0001}.-surfaces , 2001 .

[37]  Yang,et al.  Adhesive energy and charge transfer for MgO/Cu heterophase interfaces. , 1996, Physical review. B, Condensed matter.

[38]  P. W. Tasker,et al.  The stability of ionic crystal surfaces , 1979 .

[39]  D. Sholl,et al.  First principles study of Pt adhesion and growth on SrO and TiO2-terminated SrTiO3(100) , 2002 .

[40]  Horst Rogalla,et al.  Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide , 1998 .

[41]  Alexander Bogicevic,et al.  Origin of Compact Triangular Islands in Metal-on-Metal Growth , 1999 .

[42]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[43]  M. Finnis,et al.  The theory of metal - ceramic interfaces , 1996 .

[44]  O. W. Holland,et al.  Formation of epitaxial and textured platinum films on ceramics‐(100) MgO single crystals by pulsed laser deposition , 1994 .

[45]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  R. Dressler Chemical dynamics in extreme environments , 2001 .

[48]  G. Petzow,et al.  Zeitschrift fur METALLKUNDE , 2001 .

[49]  Jónsson,et al.  Low-temperature homoepitaxial growth of Pt(111) in simulated vapor deposition. , 1994, Physical review. B, Condensed matter.

[50]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[51]  F. Finocchi,et al.  Polarity on the SrTiO3 (111) and (110) surfaces , 1999 .

[52]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[53]  T. Wagner,et al.  Epitaxy of Pd thin films on (100) SrTiO3: A three-step growth process , 2001 .

[54]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.