Sinusoidally Modulated Graphene Leaky-Wave Antenna for Electronic Beamscanning at THz

This paper proposes the concept, analysis and design of a sinusoidally modulated graphene leaky-wave antenna with beam scanning capabilities at a fixed frequency. The antenna operates at terahertz frequencies and is composed of a graphene sheet transferred onto a back-metallized substrate and a set of polysilicon DC gating pads located beneath it. In order to create a leaky-mode, the graphene surface reactance is sinusoidally modulated via graphene's field effect by applying adequate DC bias voltages to the different gating pads. The pointing angle and leakage rate can be dynamically controlled by adjusting the applied voltages, providing versatile beamscanning capabilities. The proposed concept and achieved performance, computed using realistic material parameters, are extremely promising for beamscanning at THz frequencies, and could pave the way to graphene-based reconfigurable transceivers and sensors.

[1]  A. Oliner,et al.  Guided waves on sinusoidally-modulated reactance surfaces , 1959 .

[2]  F. J. Garcia-Vidal,et al.  Edge and waveguide terahertz surface plasmon modes in graphene microribbons , 2011, 1107.5787.

[3]  D. Sievenpiper,et al.  Scalar and Tensor Holographic Artificial Impedance Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[4]  F. Lederer,et al.  Tunable graphene antennas for selective enhancement of THz-emission. , 2012, Optics express.

[5]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[6]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[7]  M. Dragoman,et al.  Terahertz antenna based on graphene , 2010 .

[8]  Linsheng Wu,et al.  Design of a Beam Reconfigurable THz Antenna With Graphene-Based Switchable High-Impedance Surface , 2012, IEEE Transactions on Nanotechnology.

[9]  J. S. Gomez-Diaz,et al.  Resonant and leaky-wave reconfigurable antennas based on graphene plasmonics , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[10]  Tatsuo Itoh,et al.  Leaky-Wave Antennas , 2008, Proceedings of the IEEE.

[11]  Robert E. Miles,et al.  Terahertz Time-Domain Spectroscopy for Material Characterization , 2007, Proceedings of the IEEE.

[12]  Amit M. Patel,et al.  A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface , 2011, IEEE Transactions on Antennas and Propagation.

[13]  P. Siegel Terahertz Technology , 2001 .

[14]  A. Rogalski Infrared detectors: status and trends , 2003 .

[15]  S. Maci,et al.  Metasurfing: Addressing Waves on Impenetrable Metasurfaces , 2011, IEEE Antennas and Wireless Propagation Letters.

[16]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[17]  N. Peres,et al.  Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  V. P. Gusynin,et al.  On the universal ac optical background in graphene , 2009, 0908.2803.

[19]  Qianfan Xu,et al.  Excitation of plasmonic waves in graphene by guided-mode resonances. , 2012, ACS nano.

[20]  F. Caminita,et al.  Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance , 2011, IEEE Transactions on Antennas and Propagation.

[21]  T. Nguyen,et al.  Four-leaf-clover-shaped antenna for a THz photomixer. , 2010, Optics express.

[22]  A. Ferreira,et al.  A PRIMER ON SURFACE PLASMON-POLARITONS IN GRAPHENE , 2013, 1302.2317.

[23]  Xiang Zhang,et al.  Switching terahertz waves with gate-controlled active graphene metamaterials. , 2012, Nature materials.

[24]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[25]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[26]  G. Goussetis,et al.  Correction of Dielectric Losses in Practical Leaky-wave Antenna Designs , 2007 .

[27]  J. Perruisseau-Carrier,et al.  Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically biased graphene sheets , 2012 .

[28]  D. Jena,et al.  Carrier statistics and quantum capacitance of graphene sheets and ribbons , 2007, 0707.2242.

[29]  J. Perruisseau-Carrier,et al.  Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection , 2012, 1212.3158.

[30]  G. Hanson,et al.  Soft-boundary graphene nanoribbon formed by a graphene sheet above a perturbed ground plane: conductivity profile and SPP modal current distribution , 2013, 1306.3138.

[31]  Yi Huang,et al.  THz photoconductive antennas in pulsed systems and CW systems , 2012, 2012 IEEE International Workshop on Antenna Technology (iWAT).

[32]  Juan Sebastian Gómez Díaz,et al.  Reconfigurable THz Plasmonic Antenna Concept Using a Graphene Stack , 2012, 1210.8057.

[33]  Gabriel M. Rebeiz,et al.  Micromachining for terahertz applications , 1998 .

[34]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[35]  G. Hanson,et al.  Dyadic Green's Functions for an Anisotropic, Non-Local Model of Biased Graphene , 2008, IEEE Transactions on Antennas and Propagation.

[36]  T. Itoh Numerical techniques for microwave and millimeter-wave passive structures , 1989 .