Athena MIMOS II Mossbauer spectrometer investigation

[1] Mossbauer spectroscopy is a powerful tool for quantitative mineralogical analysis of Fe-bearing materials. The miniature Mossbauer spectrometer MIMOS II is a component of the Athena science payload launched to Mars in 2003 on both Mars Exploration Rover missions. The instrument has two major components: (1) a rover-based electronics board that contains power supplies, a dedicated central processing unit, memory, and associated support electronics and (2) a sensor head that is mounted at the end of the instrument deployment device (IDD) for placement of the instrument in physical contact with soil and rock. The velocity transducer operates at a nominal frequency of ∼25 Hz and is equipped with two 57Co/Rh Mossbauer sources. The reference source (∼5 mCi landed intensity), reference target (α-Fe2O3 plus α-Fe0), and PIN-diode detector are configured in transmission geometry and are internal to the instrument and used for its calibration. The analysis Mossbauer source (∼150 mCi landed intensity) irradiates Martian surface materials with a beam diameter of ∼1.4 cm. The backscatter radiation is measured by four PIN-diode detectors. Physical contact with surface materials is sensed with a switch-activated contact plate. The contact plate and reference target are instrumented with temperature sensors. Assuming ∼18% Fe for Martian surface materials, experiment time is 6–12 hours during the night for quality spectra (i.e., good counting statistics); 1–2 hours is sufficient to identify and quantify the most abundant Fe-bearing phases. Data stored internal to the instrument for selectable return to Earth include Mossbauer and pulse-height analysis spectra (512 and 256 channels, respectively) for each of the five detectors in up to 13 temperature intervals (65 Mossbauer spectra), engineering data for the velocity transducer, and temperature measurements. The total data volume is ∼150 kB. The mass and power consumption are ∼500 g (∼400 g for the sensor head) and ∼2 W, respectively. The scientific measurement objectives of the Mossbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these iron-bearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite, and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe2+, Fe3+, and Fe6+), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the Mossbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels.

[1]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[2]  Per Nornberg,et al.  Magnetic Properties Experiments on the Mars Exploration Rover mission , 2003 .

[3]  Raymond E. Arvidson,et al.  Physical properties and localization investigations associated with the 2003 Mars Exploration rovers , 2003 .

[4]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[5]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[6]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[7]  Raymond E. Arvidson,et al.  Mars Exploration Rover mission , 2003 .

[8]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[9]  Alan A. Wells,et al.  Performance characteristics of the PAW instrumentation on Beagle 2 (the astrobiology lander on ESA's Mars Express Mission) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[10]  Steven H. Silverman,et al.  Miniature thermal emission spectrometer for the Mars Exploration Rover , 2002, SPIE Optics + Photonics.

[11]  R. Morris,et al.  Lunar Mare Basalts as Analogues for Martian Volcanic Compositions: Evidence from Visible, Near-IR, and Thermal Emission Spectroscopy , 2003 .

[12]  R. Morris,et al.  Evidence for platy hematite grains in Sinus Meridiani, Mars , 2002 .

[13]  Mark Maimone,et al.  Mars exploration rover engineering cameras , 2001, Remote Sensing.

[14]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[15]  Richard V. Morris,et al.  Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? , 2001 .

[16]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[17]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[18]  M. L. Wade,et al.  A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration. , 1999, Journal of geophysical research.

[19]  G. Klingelhöfer The Miniaturized Spectrometer Mimos II , 1999 .

[20]  G. Klingelhöfer,et al.  In-situ phase analysis by a versatile miniaturized Mössbauer spectrometer , 1998 .

[21]  R. Morris,et al.  Mössbauer mineralogy on the Moon: The lunar regolith , 1998 .

[22]  C. T. Ulmer,et al.  Rocky 7 prototype Mars rover field geology experiments 1. Lavic Lake and sunshine volcanic field, California , 1998 .

[23]  M B Madsen,et al.  Magnetic properties experiments on the Mars Pathfinder lander: preliminary results. , 1997, Science.

[24]  R. Morris,et al.  Low‐temperature reflectivity spectra of red hematite and the color of Mars , 1997 .

[25]  P. Held MIMOS II: ein miniaturisiertes Mößbauerspektrometer in Rückstreugeometrie zur mineralogischen Analyse der Marsoberfläche , 1997 .

[26]  Richard V. Morris,et al.  Mineralogical analysis of Martian soil and rock by a miniaturized backscattering Mössbauer spectrometer , 1996 .

[27]  J. M. Knudsen,et al.  The magnetic properties experiments on Mars Pathfinder , 1996 .

[28]  Martha W. Schaefer,et al.  Mineral spectroscopy : a tribute to Roger G. Burns , 1996 .

[29]  J. Bishop,et al.  Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars , 1996 .

[30]  R L Mancinelli,et al.  Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials. , 1995, Icarus.

[31]  R. Morris,et al.  Hematite, pyroxene, and phyllosilicates on Mars: Implications from oxidized impact melt rocks from Manicouagan Crater, Quebec, Canada , 1995 .

[32]  B. Fegley,et al.  Basalt Oxidation and the Formation of Hematite on the Surface of Venus , 1994 .

[33]  H. V. Lauer,et al.  Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. , 1993, Geochimica et cosmochimica acta.

[34]  C. Pieters,et al.  Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials. , 1993, Geochimica et cosmochimica acta.

[35]  R. Morris,et al.  Thermally altered palagonitic tephra: A spectral and process analog to the soil and dust of Mars , 1993 .

[36]  H. V. Lauer,et al.  Mineralogy of three slightly palagonitized basaltic tephra samples from the summit of Mauna Kea, Hawaii , 1993 .

[37]  J. Foh,et al.  A Moessbauer spectrometer for the mineralogical analysis of the Mars surface: First temperature dependent tests of the detector and drive system , 1993 .

[38]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[39]  E. Evlanov,et al.  Moessbauer spectrometer for mineralogical analysis of the Mars surface: Moessbauer source considerations , 1993 .

[40]  Marsha M. Pimperl,et al.  Extraterrestrial Mössbauer spectrometry , 1992 .

[41]  G. Klingelhöfer,et al.  Remarks on depth selective CEMS — Backscattering measurements , 1992 .

[42]  V. N. Khromov,et al.  Mössbauer spectroscopy on the surface of Mars. Why? , 1992 .

[43]  H. Backe,et al.  Measurement of energy resolution and dead layer thickness of LN2-cooled PIN photodiodes , 1992 .

[44]  E. Grave,et al.  Evaluation of ferrous and ferric Mössbauer fractions , 1991 .

[45]  G. Klingelhöfer,et al.  Polarization and thickness effects in Mössbauer spectroscopy , 1991 .

[46]  S. Pratt,et al.  Spectral signature of oxidized pyroxenes: Implications to remote sensing of terrestrial planets , 1991 .

[47]  R. Burns,et al.  Moessbauer spectra of olivine-rich achondrites - Evidence for preterrestrial redox reactions , 1991 .

[48]  S. McKeever,et al.  Spectroscopic characterization of minerals and their surfaces , 1990 .

[49]  R. Burns,et al.  Iron‐sulfur mineralogy of Mars: Magmatic evolution and chemical weathering products , 1990 .

[50]  R. Morris,et al.  Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil , 1990 .

[51]  J. M. Knudsen,et al.  Mössbauer spectroscopy and the iron on Mars , 1990 .

[52]  R. Burns,et al.  57Fe-bearing oxide, silicate, and aluminosilicate minerals: crystal structure trends in Mossbauer spectra , 1990 .

[53]  R. Morris,et al.  Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite , 1989 .

[54]  J. M. Knudsen Mössbauer spectroscopy of57Fe and the evolution of the solar system , 1989 .

[55]  R. Schoonheydt Spectroscopic Methods in Mineralogy and Geology , 1989 .

[56]  R. Burns,et al.  Iron Mossbauer spectral study of weathered Antarctic and SNC meteorites , 1989 .

[57]  F. Hawthorne Chapter 8. MOSSBAUER SPECTROSCOPY , 1988 .

[58]  Effect of accumulated decay product on the Mössbauer emission spectrum , 1988 .

[59]  Frank C. Hawthorne,et al.  Spectroscopic methods in mineralogy and geology , 1988 .

[60]  L. H. Bowen,et al.  Mössbauer spectroscopy. , 1988, Analytical chemistry.

[61]  U. Gonser Microscopic Methods in Metals , 1987, June.

[62]  J. M. Knudsen,et al.  Superparamagnetic component in the Orgueil meteorite and Mössbauer spectroscopy studies in applied magnetic fields , 1986, Nature.

[63]  J. M. Knudsen,et al.  Oxidation State of Iron in SNC Meteorites as Studied by Mössbauer Spectroscopy , 1986 .

[64]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[65]  T. Wdowiak,et al.  Presence of a superparamagnetic component in the Orgueil meteorite , 1984, Nature.

[66]  R. Carmichael CRC handbook of physical properties of rocks , 1982 .

[67]  R. Arvidson,et al.  Viking magnetic properties experiment - Extended mission results , 1979 .

[68]  T. Gibb The Mössbauer Effect , 1976 .

[69]  F. Schwerer,et al.  Iron distributions and metallic-ferrous ratios for Apollo lunar samples: Mössbauer and magnetic analyses. , 1974 .

[70]  G. M. Bancroft Mossbauer Spectroscopy , 1973 .

[71]  R. Housley,et al.  Characterization of fines from the Apollo 16 site , 1973 .

[72]  G. Bancroft Mössbauer spectroscopy : an introduction for inorganic chemists and geochemists , 1973 .

[73]  R. Housley,et al.  Moessbauer studies of Apollo 12 samples , 1971 .

[74]  D. L. Riley,et al.  Moessbauer instrumental analysis of Apollo 12 lunar rock and soil samples , 1971 .

[75]  V. Maxia,et al.  Shift and broadening of Mössbauer peaks by lack of collimation , 1970 .

[76]  M. Bown,et al.  Diffraction and M�ssbauer Studies of Minerals from Lunar Soils and Rocks , 1970, Science.

[77]  D. Virgo,et al.  M�ssbauer Effect and High-Voltage Electron Microscopy of Pyroxenes in Type B Samples , 1970, Science.

[78]  R. Housley,et al.  Moessbauer spectroscopy of Apollo 11 samples , 1970 .

[79]  D. L. Riley,et al.  Analysis of first returned lunar samples by Moessbauer spectrometry , 1970 .

[80]  J. Steger,et al.  Cosine effect in Mössbauer spectroscopy involving a source of non-zero radius , 1969 .

[81]  H. Wegener Der Mössbauer-effekt und seine anwendungen in physik und chemie , 1966 .

[82]  E. Kankeleit VELOCITY SPECTROMETER FOR MOSSBAUER EXPERIMENTS , 1964 .

[83]  G. Wertheim CHAPTER IX – Chemical Applications , 1964 .

[84]  Takao Hinamoto,et al.  The Polish Academy of Sciences , 1961, Nature.

[85]  G. Minchin Electrostatic Measurement of E.M.F. , 1884, Nature.