The Lunar Dust Experiment (LDEX) Onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission

The Lunar Dust Experiment (LDEX) is an in situ dust detector onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission. It is designed to characterize the variability of the dust in the lunar exosphere by mapping the size and spatial distributions of dust grains in the lunar environment as a function of local time and the position of the Moon with respect to the magnetosphere of the Earth. LDEX gauged the relative contributions of the two competing dust sources: (a) ejecta production due to the continual bombardment of the Moon by interplanetary micrometeoroids, and (b) lofting of small grains from the lunar surface due to plasma-induced near-surface electric fields.

[1]  Richard R. Vondrak,et al.  A reanalysis of the Apollo light scattering observations, and implications for lunar exospheric dust , 2011 .

[2]  R. Vondrak,et al.  Effects of levitated dust on astronomical observations from the lunar surface , 1993 .

[3]  Sascha Kempf,et al.  A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research. , 2011, The Review of scientific instruments.

[4]  M. Horányi,et al.  Lunar surface: Dust dynamics and regolith mechanics , 2007 .

[5]  D. R. Criswell,et al.  Evidence for a high altitude distribution of lunar dust , 1974 .

[6]  J. Maurer,et al.  The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission , 2014 .

[7]  H. Burton,et al.  Lunar Ejecta and Meteorites Experiment , 1973 .

[8]  M. Horányi,et al.  MODEL-DATA COMPARISONS OF LADEE/LDEX OBSERVATIONS OF LOW-ENERGY LUNAR DAYSIDE IONS , 2014 .

[9]  Differential photoelectric charging of nonconducting surfaces in space. [on sunlit strip] , 1978 .

[10]  David R. Criswell,et al.  Horizon-glow and the motion of lunar dust , 1973 .

[11]  Sascha Kempf,et al.  Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring , 2006, Science.

[12]  Mihaly Horanyi,et al.  The lunar dust environment , 2011 .

[13]  D. Glenar,et al.  Search for a high‐altitude lunar dust exosphere using Clementine navigational star tracker measurements , 2014 .

[14]  E. Grün,et al.  The Galileo Dust Detector , 1992 .

[15]  D. Landis,et al.  An Overview of the LADEE Ultraviolet-Visible Spectrometer , 2014 .

[16]  P. Feldman,et al.  Upper limits for a lunar dust exosphere from far-ultraviolet spectroscopy by LRO/LAMP , 2014 .

[17]  Sascha Kempf,et al.  The Lunar Atmosphere and Dust Environment Explorer mission , 2010, 2010 IEEE Aerospace Conference.

[18]  Konstantin V. Kholshevnikov,et al.  Impact-generated dust clouds around planetary satellites: spherically symmetric case , 2003 .

[19]  Gregor E. Morfill,et al.  The Ulysses dust experiment , 1992 .

[20]  D. Boroson,et al.  The Lunar Atmosphere and Dust Environment Explorer (LADEE) , 2012 .

[21]  Stevan Spremo,et al.  The Lunar Atmosphere and Dust Environment Explorer Mission , 2010, 2010 IEEE Aerospace Conference.

[22]  Evan A. Thomas,et al.  3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies. , 2011, The Review of scientific instruments.

[23]  D. R. Criswell,et al.  Surveyor observations of lunar horizon-glow , 1974 .

[24]  R. Srama,et al.  The Dust Environment of the Moon as Seen by the Lunar Dust Experiment (LDEX) , 2014 .

[25]  E. Grün,et al.  Calibration of the Galileo/Ulysses dust detectors with different projectile materials and at varying impact angles , 1989 .

[26]  Hugo Fechtig,et al.  Collisional balance of the meteoritic complex , 1985 .

[27]  S. Alan Stern,et al.  The lunar atmosphere: History, status, current problems, and context , 1999 .

[28]  H. Zook,et al.  Large scale lunar horizon glow and a high altitude lunar dust exosphere , 1991 .

[29]  Craig B. Markwardt,et al.  Non-linear Least Squares Fitting in IDL with MPFIT , 2009, 0902.2850.

[30]  J. Mccoy,et al.  Photometric studies of light scattering above the lunar terminator from Apollo solar corona photography , 1976 .

[31]  F. Spahn,et al.  Impact-generated dust clouds around planetary satellites: asymmetry effects , 2003 .

[32]  D. Criswell,et al.  Intense localized photoelectric charging in the lunar sunset terminator region, 1. Development of potentials and fields , 1977 .

[33]  U. Beckmann,et al.  How the Enceladus dust plume feeds Saturn’s E ring , 2010 .

[34]  E. Grün,et al.  Detection of an impact-generated dust cloud around Ganymede , 1999, Nature.

[35]  Butler Hine,et al.  The Lunar Atmosphere and Dust Environment Explorer Mission , 2015 .

[36]  E. Igenbergs,et al.  The Cassini Cosmic Dust Analyzer , 2004 .

[37]  Phillip C. Chamberlin,et al.  Variability of the lunar photoelectron sheath and dust mobility due to solar activity , 2008 .

[38]  A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids , 2000, astro-ph/0006209.

[39]  D. Brownlee,et al.  A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust , 1993, Science.

[40]  R. Srama,et al.  Modeling the UV Signal Scattered into the Lunar Dust EXperiment (LDEX) from the Surface , 2014 .

[41]  Guenther Eichhorn,et al.  The HEOS 2 and HELIOS micrometeoroid experiments , 1973 .

[42]  A. Taylor Earth encounter velocities for interplanetary meteoroids , 1996 .

[43]  H. Svedhem,et al.  Cosmic dust measurements in lunar orbit , 1996 .