Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases

Grobner Bases [Buc70] and Cylindrical Algebraic Decomposition [Col75,CMMXY09] are generally thought of as two, rather different, methods of looking at systems of equations and, in the case of Cylindrical Algebraic Decomposition, inequalities. However, even for a mixed system of equalities and inequalities, it is possible to apply Grobner bases to the (conjoined) equalities before invoking CAD. We see that this is, quite often but not always, a beneficial preconditioning of the CAD problem. It is also possible to precondition the (conjoined) inequalities with respect to the equalities, and this can also be useful in many cases.

[1]  Bruno Buchberger,et al.  Speeding-up Quantifier Elimination by Gr?bner Bases , 1991 .

[2]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[3]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[4]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[5]  V. Sorge,et al.  Speeding up Cylindrical Algebraic Decomposition by Gröbner Bases , 2012 .

[6]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[7]  David J. Wilson Real Geometry and Connectedness via Triangular Description: CAD Example Bank , 2012 .

[8]  Patrizia M. Gianni,et al.  Properties of Gröbner bases under specializations , 1987, EUROCAL.

[9]  Bruno Buchberger,et al.  An Algorithmic Criterion for the Solvability of a System of Algebraic Equations (translated by Michael Abramson and Robert Lumbert) , 1998 .

[10]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[11]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[12]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[13]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[14]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[15]  Heinz Kredel,et al.  Gröbner Bases Using SAC-2 , 1985, European Conference on Computer Algebra.

[16]  Andreas Seidl,et al.  Efficient projection orders for CAD , 2004, ISSAC '04.

[17]  Russell J. Bradford,et al.  Practical Simplification of Elementary Functions Using CAD , 2005, Algorithmic Algebra and Logic.

[18]  André Platzer,et al.  Real World Verification , 2009, CADE.

[19]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[20]  B. Buchberger,et al.  Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[21]  Michael Kalkbrener Solving systems of algebraic equations by using Gröbner bases , 1987, EUROCAL.