The SK model is Full-step Replica Symmetry Breaking at zero temperature

We prove that the Parisi measure of the mixed p-spin model at zero temperature has infinitely many points in its support. This establishes Parisi's prediction that the functional order parameter of the Sherrington-Kirkpatrick model is not a step function at zero temperature. As a consequence, we show that the number of levels of broken replica symmetry in the Parisi formula of the free energy diverges as the temperature goes to zero.

[1]  Antonio Auffinger,et al.  On properties of Parisi measures , 2013, 1303.3573.

[2]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[3]  M. Talagrand The parisi formula , 2006 .

[4]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[5]  M. Talagrand Spin glasses : a challenge for mathematicians : cavity and mean field models , 2003 .

[6]  Eliran Subag,et al.  The complexity of spherical p-spin models - a second moment approach , 2015, 1504.02251.

[7]  Wei-Kuo Chen,et al.  The Parisi Formula has a Unique Minimizer , 2014, 1402.5132.

[8]  Andrea Montanari,et al.  Extremal Cuts of Sparse Random Graphs , 2015, ArXiv.

[9]  Aukosh Jagannath,et al.  A Dynamic Programming Approach to the Parisi Functional , 2015, 1502.04398.

[10]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[11]  B. Derrida The discovery of the broken symmetry of replicas , 2016 .

[12]  S. Stenholm Information, Physics and Computation, by Marc Mézard and Andrea Montanari , 2010 .

[13]  Subhabrata Sen,et al.  Optimization on sparse random hypergraphs and spin glasses , 2016, Random Struct. Algorithms.

[14]  G. Parisi Field Theory, Disorder and Simulations , 1992 .

[15]  Wei-Kuo Chen,et al.  Parisi formula for the ground state energy in the mixed p-spin model , 2016, 1606.05335.

[16]  Dmitry Panchenko,et al.  The Parisi formula for mixed $p$-spin models , 2011, 1112.4409.

[17]  Wei-Kuo Chen,et al.  On the energy landscape of spherical spin glasses , 2017, 1702.08906.

[18]  Giorgio Parisi,et al.  Order parameter for spin-glasses , 1983 .

[19]  Dmitry Panchenko,et al.  The Parisi ultrametricity conjecture , 2011, 1112.1003.

[20]  Fabio L. Toninelli About the Almeida-Thouless transition line in the Sherrington-Kirkpatrick mean-field spin glass model , 2002 .

[21]  M. Talagrand Mean Field Models for Spin Glasses , 2011 .

[22]  F. Guerra,et al.  Ju l 1 99 8 General properties of overlap probability distributions in disordered spin systems , 1998 .

[23]  M. Aizenman,et al.  Extended variational principle for the Sherrington-Kirkpatrick spin-glass model , 2003 .

[24]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[25]  Wei-Kuo Chen,et al.  On the energy landscape of the mixed even p-spin model , 2016, 1609.04368.

[26]  M. Aizenman,et al.  An Extended Variational Principle for the SK Spin-Glass Model , 2003, cond-mat/0306386.

[27]  F. Guerra Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model , 2002, cond-mat/0205123.

[28]  G. Parisi The order parameter for spin glasses: a function on the interval 0-1 , 1980 .

[29]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[30]  D. Ruelle,et al.  Some rigorous results on the Sherrington-Kirkpatrick spin glass model , 1987 .

[31]  D. Panchenko The Sherrington-Kirkpatrick Model , 2013 .