Liquid Crystals Comprising π-Electronic Ions from Porphyrin–AuIII Complexes

[1]  Y. Haketa,et al.  Dimension-Controlled π-Electronic Ion-Pairing Assemblies , 2018 .

[2]  M. Bauer,et al.  Structure and reactivity of a mononuclear gold(II) complex. , 2017, Nature chemistry.

[3]  H. Maeda,et al.  Deprotonated meso-hydroxyporphyrin as a stable π-electronic anion: the building unit of an ion-pairing assembly. , 2017, Dalton transactions.

[4]  A. Osuka,et al.  Stable NiII Porphyrin meso-Oxy Radical with a Quartet Ground State. , 2017, Chemistry.

[5]  Y. Haketa,et al.  Dimension-controlled ion-pairing assemblies based on π-electronic charged species. , 2017, Chemical communications.

[6]  C. Nevado,et al.  Cyclometalated Gold(III) Complexes: Synthesis, Reactivity, and Physicochemical Properties. , 2017, Angewandte Chemie.

[7]  H. Takaya,et al.  Ion-Pairing Assemblies Based on Pentacyano-Substituted Cyclopentadienide as a π-Electronic Anion. , 2016, Chemistry.

[8]  K. Lava,et al.  Ionic Liquid Crystals: Versatile Materials. , 2016, Chemical reviews.

[9]  K. Heinze,et al.  Gold(iii) tetraarylporphyrin amino acid derivatives: ligand or metal centred redox chemistry? , 2015, Chemical science.

[10]  Vonika Ka-Man Au,et al.  Light-Emitting Self-Assembled Materials Based on d(8) and d(10) Transition Metal Complexes. , 2015, Chemical reviews.

[11]  Wen-jie Zheng,et al.  A cancer-targeted nanosystem for delivery of gold(III) complexes: enhanced selectivity and apoptosis-inducing efficacy of a gold(III) porphyrin complex. , 2014, Angewandte Chemie.

[12]  C. Faul Ionic self-assembly for functional hierarchical nanostructured materials. , 2014, Accounts of chemical research.

[13]  Ho‐Chol Chang,et al.  Self-association and columnar liquid crystalline phase of cationic alkyl-substituted-bipyridine benzenedithiolato gold(III) complexes. , 2013, Dalton transactions.

[14]  Takeo Sakai,et al.  Synthesis of functionalized tetracyanocyclopentadienides from tetracyanothiophene and sulfones. , 2013, The Journal of organic chemistry.

[15]  B. Dong,et al.  Ion-based materials derived from positively and negatively charged chloride complexes of π-conjugated molecules. , 2013, Journal of the American Chemical Society.

[16]  Weihua Zhu,et al.  Gold(III) porphyrins containing two, three, or four β,β'-fused quinoxalines. Synthesis, electrochemistry, and effect of structure and acidity on electroreduction mechanism. , 2013, Inorganic chemistry.

[17]  B. Dong,et al.  Cation modules as building blocks forming supramolecular assemblies with planar receptor-anion complexes. , 2013, Journal of the American Chemical Society.

[18]  S. Seki,et al.  Ion materials comprising planar charged species. , 2012, Chemistry.

[19]  W. Lu,et al.  Organogold(III) supramolecular polymers for anticancer treatment. , 2012, Angewandte Chemie.

[20]  B. Dong,et al.  Charge-based assemblies comprising planar receptor-anion complexes with bulky alkylammonium cations. , 2012, Chemistry.

[21]  Weihua Zhu,et al.  Unusual multi-step sequential Au(III)/Au(II) processes of gold(III) quinoxalinoporphyrins in acidic non-aqueous media. , 2011, Inorganic chemistry.

[22]  H. Butt,et al.  Effect of dipole functionalization on the thermodynamics and dynamics of discotic liquid crystals. , 2011, The journal of physical chemistry. B.

[23]  H. Takezoe,et al.  Oriented salts: dimension-controlled charge-by-charge assemblies from planar receptor-anion complexes. , 2010, Angewandte Chemie.

[24]  J. Rawson,et al.  A simple approach to coordination compounds of the pentacyanocyclopentadienide anion. , 2010, Chemistry.

[25]  S. Maruyama,et al.  Room Temperature Liquid Porphyrins , 2010 .

[26]  D. Gryko,et al.  Meso-substituted liquid porphyrins. , 2010, Chemistry, an Asian journal.

[27]  K. Müllen,et al.  Negative Thermal Expansion in Discotic Liquid Crystals of Nanographenes , 2010, Advanced materials.

[28]  C. Leung,et al.  Stable anticancer gold(III)-porphyrin complexes: effects of porphyrin structure. , 2010, Chemistry.

[29]  V. Roy,et al.  Controlled self-assembly of functional metal octaethylporphyrin 1 D nanowires by solution-phase precipitative method. , 2008, Chemistry, an Asian journal.

[30]  E. Blart,et al.  Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads. , 2008, Chemistry.

[31]  Jürgen Gauss,et al.  Helical packing of discotic hexaphenyl hexa-peri-hexabenzocoronenes: theory and experiment. , 2007, The journal of physical chemistry. B.

[32]  Qing‐Yu He,et al.  Cellular pharmacological properties of gold(III) porphyrin 1a, a potential anticancer drug lead. , 2007, European journal of pharmacology.

[33]  J. Andréasson,et al.  Triplet photophysics of gold(III) porphyrins. , 2005, The journal of physical chemistry. A.

[34]  Takashi Kato,et al.  Functional liquid-crystalline assemblies: self-organized soft materials. , 2005, Angewandte Chemie.

[35]  C. Reed,et al.  Exploration of the pentacyano-cyclo-pentadienide ion, C(5)(CN)(5)(-), as a weakly coordinating anion and potential superacid conjugate base. Silylation and protonation. , 2004, Chemical communications.

[36]  Hongzhe Sun,et al.  Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. , 2003, Chemical communications.

[37]  J. Davidsson,et al.  Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination. , 2002, Journal of the American Chemical Society.

[38]  B. Albinsson,et al.  Bridge-dependent electron transfer in porphyrin-based donor-bridge-acceptor systems. , 2001, Journal of the American Chemical Society.

[39]  T. Radhakrishnan,et al.  'Core and sheath' structure of a TTF complex forming a square grid , 1999 .

[40]  A. Harriman,et al.  Charge transfer across oblique bisporphyrins: two-center photoactive molecules , 1991 .

[41]  H. Adams,et al.  Synthesis and phase behaviour of mesomorphic transition-metal complexes of alkoxydithiobenzoates , 1991 .

[42]  C. Rohl,et al.  Crystal structure and electrical properties of (BEDT-TTF)2Cp(CN)5·(solvent)x , 1989 .

[43]  Amy M. Shachter,et al.  The structure of (5,10,15,20-tetraphenylporphinato)gold(III) tetrachloroaurate(III) , 1987 .

[44]  Z. Soos,et al.  Structure and magnetism of NNN’N’‐tetramethyl‐p‐phenylenediamine ‐pentacyanocyclopentadienide (TMPD‐PCCp) , 1986 .

[45]  A. White,et al.  Pentakis(Methoxycarbonyl)-Cyclopentadiene Chemistry .X. Crystal-Structure of the Charge-Transfer Complex Tropylium Pentakis(Methoxycarbonyl)Cyclopentadienide , 1986 .

[46]  Ah White,et al.  Pentakis(methoxycarbonyl)cyclopentadiene chemistry. VIII. Some onium salts X-ray structure of [Nme4][C5(CO2Me)5] , 1984 .

[47]  R. Timkovich,et al.  Coordination and geometry of gold in chloro(.alpha.,.beta.,.gamma.,.delta.-tetraphenylporphinato)gold(III) , 1977 .

[48]  A. Laszlo,et al.  Synthesis of a gold porphyrin , 1969 .

[49]  R. Kuhn,et al.  Tris-(7H-dibenzo[c,g]fluorenylidenemethyl)methane a New Highly Acidic Hydrocarbon† , 1967 .

[50]  O. Webster Diazotetracyanocyclopentadiene and Its Conversion to Tetracyanocyclopentadienide and Pentacyanocyclopentadienide , 1965 .

[51]  O. Diels Zur Kenntnis des Mechanismus der Dien-Synthese, I. Mitteil.: Über den Reaktionsverlauf zwischen Malonestern sowie Cyanessigester und Acetylen-dicarbonsäureester bei Gegenwart von Pyridinacetat , 1942 .