Testing composite hypotheses via convex duality

We study the problem of testing composite hypotheses versus composite alternatives, using a convex duality approach. In contrast to classical results obtained by Krafft & Witting [11], where sufficient optimality conditions are obtained via Lagrange duality, we obtain necessary and sufficient optimality conditions via Fenchel duality under some compactness assumptions. This approach also dif

[1]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[2]  H. Witting,et al.  Optimale Tests und ungünstigste Verteilungen , 1967 .

[3]  F. Österreicher,et al.  On the construction of least favourable pairs of distributions , 1978 .

[4]  J. S. Wang Statistical Theory of Superlattices with Long-Range Interaction. I. General Theory , 1938 .

[5]  Alexander Schied,et al.  On the Neyman–Pearson problem for law-invariant risk measures and robust utility functionals , 2004, math/0407127.

[6]  J. Aubin,et al.  APPLIED FUNCTIONAL ANALYSIS , 1981, The Mathematical Gazette.

[7]  H. Rieder Least Favorable Pairs for Special Capacities , 1977 .

[8]  Ioannis Karatzas,et al.  GENERALIZED NEYMAN-PEARSON LEMMA VIA CONVEX DUALITY ⁄ , 2001 .

[9]  T. Bednarski On solutions of minimax test problems for special capacities , 1981 .

[10]  P. J. Huber,et al.  Minimax Tests and the Neyman-Pearson Lemma for Capacities , 1973 .

[11]  Charles Stein,et al.  Most Powerful Tests of Composite Hypotheses. I. Normal Distributions , 1948 .

[12]  Hans Föllmer,et al.  Efficient hedging: Cost versus shortfall risk , 2000, Finance Stochastics.

[13]  Hermann Witting,et al.  Mathematische Statistik II , 1985 .

[14]  Jaksa Cvitanic Minimizing Expected Loss of Hedging in Incomplete and Constrained Markets , 2000, SIAM J. Control. Optim..

[15]  Birgit Rudloff Convex Hedging in Incomplete Markets , 2007 .

[16]  A. Papoulis,et al.  Normal distributions , 1963 .

[17]  Gerald S. Rogers,et al.  Mathematical Statistics: A Decision Theoretic Approach , 1967 .

[18]  V. Baumann,et al.  Eine parameterfreie Theorie der ungünstigsten Verteilungen für das Testen von Hypothesen , 1968 .

[19]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[20]  James V. Bondar,et al.  Mathematical theory of statistics , 1985 .

[21]  Jak Sa Cvitani Minimizing Expected Loss of Hedging in Incomplete and Constrained Markets , 1998 .

[22]  On the Existence of Least Favorable Distributions , 1952 .

[23]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[24]  J. Oden,et al.  Applied Functional Analysis, Second Edition , 2010 .

[25]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[26]  I. Vajda Theory of statistical inference and information , 1989 .

[27]  Tadeusz Bednarski,et al.  Binary Experiments, Minimax Tests and 2-Alternating Capacities , 1982 .

[28]  J. Aubin Mathematical methods of game and economic theory , 1979 .