Explicit Substitutions with de Bruijn's Levels

[1]  Pierre Lescanne,et al.  The Calculus of Explicit Substitutions , 1994 .

[2]  Thomas Strahm Partial Applicative Theories and Explicit Substitutions , 1996, J. Log. Comput..

[3]  Nachum Dershowitz,et al.  Completion for Rewriting Modulo a Congruence , 1987, Theor. Comput. Sci..

[4]  Pierre Crégut,et al.  An abstract machine for Lambda-terms normalization , 1990, LISP and Functional Programming.

[5]  P. Crégut Machines a environnement pour la reduction symbolique et l'evaluation partielle , 1991 .

[6]  Luca Roversi,et al.  Categorical semantics of the call-by-value lambda-calculus , 1995 .

[8]  Paul-André Melliès Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.

[9]  de Ng Dick Bruijn A namefree lambda calculus with facilities for internal definition of expressions and segments , 1978 .

[10]  John Field,et al.  On laziness and optimality in lambda interpreters: tools for specification and analysis , 1989, POPL '90.

[11]  A. Rios Contributions a l'etude des lambda-calculs avec substitutions explicites , 1993 .

[12]  Pierre Lescanne,et al.  λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.

[13]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[14]  Thérèse Hardin,et al.  Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..

[15]  Azuma Ohuchi,et al.  30周年記念論文 佳作:Modularity of Simple Termination of Term Rewriting Systems , 1990 .

[16]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[17]  Tim Teitelbaum,et al.  Incremental reduction in the lambda calculus , 1990, LISP and Functional Programming.

[18]  Pierre Lescanne,et al.  From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.

[19]  Paul-Andr Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .

[20]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[21]  John Henry Field Incremental reduction in the lambda calculus and related reduction systems , 1991 .

[22]  Haskell B. Curry,et al.  Combinatory Logic, Volume I , 1959 .

[23]  Jean-Jacques Lévy,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.