Explicit Substitutions with de Bruijn's Levels
暂无分享,去创建一个
[1] Pierre Lescanne,et al. The Calculus of Explicit Substitutions , 1994 .
[2] Thomas Strahm. Partial Applicative Theories and Explicit Substitutions , 1996, J. Log. Comput..
[3] Nachum Dershowitz,et al. Completion for Rewriting Modulo a Congruence , 1987, Theor. Comput. Sci..
[4] Pierre Crégut,et al. An abstract machine for Lambda-terms normalization , 1990, LISP and Functional Programming.
[5] P. Crégut. Machines a environnement pour la reduction symbolique et l'evaluation partielle , 1991 .
[6] Luca Roversi,et al. Categorical semantics of the call-by-value lambda-calculus , 1995 .
[8] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.
[9] de Ng Dick Bruijn. A namefree lambda calculus with facilities for internal definition of expressions and segments , 1978 .
[10] John Field,et al. On laziness and optimality in lambda interpreters: tools for specification and analysis , 1989, POPL '90.
[11] A. Rios. Contributions a l'etude des lambda-calculs avec substitutions explicites , 1993 .
[12] Pierre Lescanne,et al. λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.
[13] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[14] Thérèse Hardin,et al. Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..
[15] Azuma Ohuchi,et al. 30周年記念論文 佳作:Modularity of Simple Termination of Term Rewriting Systems , 1990 .
[16] Jean-Pierre Jouannaud,et al. Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[17] Tim Teitelbaum,et al. Incremental reduction in the lambda calculus , 1990, LISP and Functional Programming.
[18] Pierre Lescanne,et al. From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.
[19] Paul-Andr. Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .
[20] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[21] John Henry Field. Incremental reduction in the lambda calculus and related reduction systems , 1991 .
[22] Haskell B. Curry,et al. Combinatory Logic, Volume I , 1959 .
[23] Jean-Jacques Lévy,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.