Inability of Lyapunov exponents to predict epileptic seizures.

It has been claimed that Lyapunov exponents computed from electroencephalogram or electrocorticogram (ECoG) time series are useful for early prediction of epileptic seizures. We show, by utilizing a paradigmatic chaotic system, that there are two major obstacles that can fundamentally hinder the predictive power of Lyapunov exponents computed from time series: finite-time statistical fluctuations and noise. A case study with an ECoG signal recorded from a patient with epilepsy is presented.

[1]  C. Elger,et al.  CAN EPILEPTIC SEIZURES BE PREDICTED? EVIDENCE FROM NONLINEAR TIME SERIES ANALYSIS OF BRAIN ELECTRICAL ACTIVITY , 1998 .

[2]  J. Martinerie,et al.  Epileptic seizures can be anticipated by non-linear analysis , 1998, Nature Medicine.

[3]  Leonidas D. Iasemidis,et al.  Quadratic Binary Programming and Dynamical System Approach to Determine the Predictability of Epileptic Seizures , 2001, J. Comb. Optim..

[4]  James A. Yorke,et al.  Reconstructing the Jacobian from Data with Observational Noise , 1999 .

[5]  I. Osorio,et al.  Observations on the Application of the Correlation Dimension and Correlation Integral to the Prediction of Seizures , 2001, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[6]  James A. Yorke,et al.  SPURIOUS LYAPUNOV EXPONENTS IN ATTRACTOR RECONSTRUCTION , 1998 .

[7]  V. Protopopescu,et al.  Timely detection of dynamical change in scalp EEG signals. , 2000, Chaos.

[8]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[9]  Theiler,et al.  Spurious dimension from correlation algorithms applied to limited time-series data. , 1986, Physical review. A, General physics.

[10]  R. Quiroga,et al.  Kulback-Leibler and renormalized entropies: applications to electroencephalograms of epilepsy patients. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  C. Elger,et al.  Seizure prediction by non‐linear time series analysis of brain electrical activity , 1998, The European journal of neuroscience.

[12]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[13]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[14]  Luis Diambra,et al.  Nonlinear models for detecting epileptic spikes , 1999 .

[15]  P. Rapp,et al.  The algorithmic complexity of neural spike trains increases during focal seizures , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  Steven J. Schiff,et al.  Forecasting brain storms , 1998, Nature Medicine.

[17]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[18]  GOTTFRIED MAYER‐KRESS AND,et al.  Dimensionality of the Human Electroencephalogram , 1987, Annals of the New York Academy of Sciences.

[19]  W. J. Nowack Neocortical Dynamics and Human EEG Rhythms , 1995, Neurology.

[20]  Schwartz,et al.  Singular-value decomposition and the Grassberger-Procaccia algorithm. , 1988, Physical review. A, General physics.

[21]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[22]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[24]  Alistair I. Mees,et al.  Dynamics of brain electrical activity , 2005, Brain Topography.

[25]  Ying-Cheng Lai,et al.  Correlation-dimension and autocorrelation fluctuations in epileptic seizure dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Christopher K. R. T. Jones,et al.  Global dynamical behavior of the optical field in a ring cavity , 1985 .

[27]  Jacques Martinerie,et al.  Unstable periodic orbits in human epileptic activity , 1997 .

[28]  M. Plotkin Nature as medicine. , 2005, Explore.

[29]  J. Rogers Chaos , 1876 .

[30]  R Porcher,et al.  Estimating Lyapunov exponents in biomedical time series. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  D. Rand Dynamical Systems and Turbulence , 1982 .

[32]  W. J. Williams,et al.  Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures , 2005, Brain Topography.

[33]  K Lehnertz,et al.  Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.