The O2 nightglow in the martian atmosphere by SPICAM onboard of Mars-Express

Abstract We present observations of the O 2 (a 1 Δ g ) nightglow at 1.27 μm on Mars using the SPICAM IR spectrometer onboard of the Mars Express orbiter. In contrast to the O 2 (a 1 Δ g ) dayglow that results from the ozone photodissociation, the O 2 (a 1 Δ g ) nightglow is a product of the recombination of O atoms formed by CO 2 photolysis on the dayside at altitudes higher than 80 km and transported downward above the winter pole by the Hadley circulation. The first detections of the O 2 (a 1 Δ g ) nightglow in 2010 indicate that it is about two order of magnitude less intense than the dayglow (Bertaux, J.-L., Gondet, B., Bibring, J.-P., Montmessin, F., Lefevre, F. [2010]. Bull. Am. Astron. Soc. 42, 1040; Clancy et al. [2010]. Bull. Am. Astron. Soc. 42, 1041). SPICAM IR sounds the martian atmosphere in the near-IR range (1–1.7 μm) with the spectral resolution of 3.5 cm −1 in nadir, limb and solar occultation modes. In 2010 the vertical profiles of the O 2 (a 1 Δ g ) nightside emission have been obtained near the South Pole at latitudes of 82–83°S for two sequences of observations: L s  = 111–120° and L s  = 152–165°. The altitude of the emission maximum varied from 45 km on L s  = 111–120° to 38–49 km on L s  = 152–165°. Averaged vertically integrated intensity of the emission at these latitudes has shown an increase from 0.22 to 0.35 MR. Those values of total vertical emission rate are consistent with the OMEGA observations on Mars-Express in 2010. The estimated density of oxygen atoms at altitudes from 50 to 65 km varies from 1.5 × 10 11 to 2.5 × 10 11  cm −3 . Comparison with the LMD general circulation model with photochemistry (Lefevre, F., Lebonnois, S., Montmessin, F., Forget, F. [2004]. J. Geophys. Res. 109, E07004; Lefevre et al. [2008]. Nature 454, 971–975) shows that the model reproduces fairly well the O 2 (a 1 Δ g ) emission layer observed by SPICAM when the large field of view (>20 km on the limb) of the instrument is taken into account.

[1]  Ernest Hilsenrath,et al.  Solar irradiance reference spectra for two solar active levels , 2004 .

[2]  J. E. McCord,et al.  Measurement of the radiative lifetime of O2(a1Δg) using cavity ring down spectroscopy , 2001 .

[3]  R. Robertson,et al.  Temperature dependence of oxygen atom recombination in nitrogen after ozone photolysis , 2008 .

[4]  J. Gérard,et al.  Distribution of the ultraviolet nitric oxide Martian night airglow: Observations from Mars Express and comparisons with a one‐dimensional model , 2008 .

[5]  W. Traub,et al.  The latitude variation of O2 dayglow and O3 abundance on Mars , 1979 .

[6]  Giuseppe Piccioni,et al.  Distribution of the O2 infrared nightglow observed with VIRTIS on board Venus Express , 2008 .

[7]  T. Slanger,et al.  Energetic oxygen in the upper atmosphere and the laboratory. , 2003, Chemical reviews.

[8]  Mark I. Richardson,et al.  Intense polar temperature inversion in the middle atmosphere on Mars , 2008 .

[9]  V. Krasnopolsky Seasonal variations of photochemical tracers at low and middle latitudes on Mars: Observations and models , 2009 .

[10]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[11]  D. Fussen,et al.  Stellar occultations observed by SPICAM on Mars Express , 2006 .

[12]  F. Leblanc,et al.  Martian oxygen density at the exobase deduced from O I 130.4‐nm observations by Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars on Mars Express , 2009 .

[13]  G. T. Fraser,et al.  Rotational Line Strengths and Self-Pressure-Broadening Coefficients for the 1.27-microm, a (1)D(g)-X (3)?(g)(-), v = 0-0 Band of O(2). , 1998, Applied optics.

[14]  N. Chanover,et al.  The Venus nightglow: Ground-based observations and chemical mechanisms , 2006 .

[15]  F. G. Carrozzo,et al.  O2 1.27 μm emission maps as derived from OMEGA/MEx data , 2009 .

[16]  D. Huestis Current Laboratory Experiments for Planetary Aeronomy , 2013 .

[17]  V. Krasnopolsky Venus night airglow: Ground-based detection of OH, observations of O2 emissions, and photochemical model , 2009 .

[18]  John C. Gille,et al.  On the inversion of limb radiance measurements. I. , 1971 .

[19]  David J. Nesbitt,et al.  The Einstein Coefficient for spontaneous emission of the O2 (a¹Δg) state , 1995 .

[20]  I. Campbell,et al.  The association of oxygen atoms and their combination with nitrogen atoms , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[22]  D. Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: The thermal structure and water abundance near the surface , 1996 .

[23]  David A. Newnham,et al.  Integrated absorption intensity and Einstein coefficients for the O2 a1Δg-X3Σg- (0,0) transition: a comparison of cavity ringdown and high resolution Fourier transform spectroscopy with a long-path absorption cell , 1999 .

[24]  M. Alexander,et al.  Atomic oxygen in the Martian thermosphere , 1992 .

[25]  W. Traub,et al.  Detection of O2 dayglow emission from Mars and the Martian ozone abundance , 1976 .

[26]  John C. Gille,et al.  Inversion of limb radiance measurements: An operational algorithm , 1986 .

[27]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[28]  Giuseppe Piccioni,et al.  Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations , 2008 .

[29]  Jean-Pierre Bibring,et al.  First detection of O 2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions , 2012 .

[30]  G. Bjoraker,et al.  Mapping of Mars O2(1Δ) dayglow , 2000 .

[31]  F. Forget,et al.  Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM , 2009 .

[32]  J. P. Dubois,et al.  SPICAM IR acousto-optic spectrometer experiment on Mars Express , 2006 .

[33]  Giuseppe Piccioni,et al.  Near-IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere , 2009 .

[34]  V. Krasnopolsky Mapping of Mars O2 1.27 μm dayglow at four seasonal points , 2003 .

[35]  M. DiSanti,et al.  Mapping of ozone and water in the atmosphere of Mars near the 1997 aphelion , 2002 .

[36]  P. Drossart,et al.  Atomic oxygen distribution in the Venus mesosphere from observations of O2 infrared airglow by VIRTIS-Venus Express , 2009 .

[37]  M. Molina,et al.  Chemical kinetics and photochemical data for use in stratospheric modeling , 1985 .

[38]  J. Dubois,et al.  Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR , 2006 .

[39]  F. Montmessin,et al.  O2 nightglow emission detection in the atmosphere of Mars, identified by the OMEGA/MEx investigation , 2010 .

[40]  Marie‐Ève Gagné,et al.  Simulations of the O2 IR atmospheric Emissions in the Martian atmosphere , 2011 .

[41]  C. Hord,et al.  Mariner Ultraviolet Spectrometer: Topography and Polar Cap , 1971, Science.

[42]  A. Fedorova,et al.  Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions , 2006 .

[43]  V. Krasnopolsky Excitation of the oxygen nightglow on the terrestrial planets , 2011 .

[44]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[45]  Franck Lefèvre,et al.  Three-dimensional modeling of ozone on Mars , 2004 .

[46]  Richard M. Badger,et al.  Absolute Intensities of the Discrete and Continuous Absorption Bands of Oxygen Gas at 1.26 and 1.065 μ and the Radiative Lifetime of the 1Δg State of Oxygen , 1965 .

[47]  P. Drossart,et al.  Investigation of oxygen O2(a1Δg) emission on the nightside of Venus: Nadir data of the VIRTIS-M experiment of the Venus Express mission , 2010 .

[48]  W. Borucki,et al.  Venus O2 visible and IR nightglow : implications for lower thermosphere dynamics and chemistry , 1994 .

[49]  S. Melo,et al.  Airglow on Mars: Some model expectations for the OH Meinel bands and the O2 IR atmospheric band , 2005 .

[50]  Wing Tsang,et al.  Critical Review of rate constants for reactions of hydrated electronsChemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane , 1988 .

[51]  T. Encrenaz,et al.  Heterogeneous chemistry in the atmosphere of Mars , 2008, Nature.

[52]  D. D. Drysdale,et al.  Evaluated kinetic data for high temperature reactions , 1972 .

[53]  D. Pejaković,et al.  Laboratory determination of the rate coefficient for three-body recombination of oxygen atoms in nitrogen , 2008 .

[54]  David Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: 1.27‐μm O2(a 1Δ g ) airglow from the upper atmosphere , 1996 .

[55]  B. Cantor,et al.  MRO CRISM and MARCI Observations of Mars Ozone , 2011 .

[56]  F. Lefévre,et al.  Observation of O2 1.27 μm dayglow by SPICAM IR: Seasonal distribution for the first Martian year of Mars Express , 2006 .

[57]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[58]  I. Campbell,et al.  Rate constants for O(3P) recombination and association with N(4S) , 1973 .