Learning of Class Membership Values by Ellipsoidal Decision Regions

A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid. Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex. Keywords— ellipsoid, genetic algorithm, decision regions, classification

[1]  Robert J. Schalkoff,et al.  Pattern recognition - statistical, structural and neural approaches , 1991 .

[2]  James C. Bezdek,et al.  Generalized fuzzy c-means clustering strategies using Lp norm distances , 2000, IEEE Trans. Fuzzy Syst..

[3]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[5]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[6]  Witold Pedrycz,et al.  Fuzzy neural networks with reference neurons as pattern classifiers , 1992, IEEE Trans. Neural Networks.

[7]  Hadar I. Avi-Itzhak,et al.  Multiple Subclass Pattern Recognition: A Maximin Correlation Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Roy George,et al.  Fuzzy clustering with genetic search , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[9]  Sankar K. Pal,et al.  Multilayer perceptron, fuzzy sets, and classification , 1992, IEEE Trans. Neural Networks.

[10]  J.C. Bezdek,et al.  Computing with uncertainty , 1992, IEEE Communications Magazine.

[11]  Witold Pedrycz,et al.  Fuzzy sets in pattern recognition: Methodology and methods , 1990, Pattern Recognit..

[12]  Qiuming Zhu,et al.  A multiple hyper-ellipsoidal subclass model for an evolutionary classifier , 2001, Pattern Recognit..

[13]  Sing-Tze Bow,et al.  Pattern recognition. Applications to large data-set problems , 1984 .

[14]  Mitsuo Gen,et al.  Genetic algorithm for fuzzy clustering , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[15]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition , 1992 .

[16]  Sankar K. Pal,et al.  Fuzzy Mathematical Approach to Pattern Recognition , 1986 .

[17]  Qiuming Zhu,et al.  A subclass model for non-linear pattern classification , 1998, Pattern Recognit. Lett..

[18]  Leehter Yao,et al.  Nonparametric learning of decision regions via the genetic algorithm , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[19]  Tarun Khanna,et al.  Foundations of neural networks , 1990 .

[20]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .