Leveraging Multiple MT Engines for Paraphrase Generation

This paper proposes a method that leverages multiple machine translation (MT) engines for paraphrase generation (PG). The method includes two stages. Firstly, we use a multi-pivot approach to acquire a set of candidate paraphrases for a source sentence S. Then, we employ two kinds of techniques, namely the selection-based technique and the decoding-based technique, to produce a best paraphrase T for S using the candidates acquired in the first stage. Experimental results show that: (1) The multi-pivot approach is effective for obtaining plenty of valuable candidate paraphrases. (2) Both the selection-based and decoding-based techniques can make good use of the candidates and produce high-quality paraphrases. Moreover, these two techniques are complementary. (3) The proposed method outperforms a state-of-the-art paraphrase generation approach.

[1]  Kathleen F. McCoy,et al.  Generation of Single-sentence Paraphrases from Predicate/Argument Structure using Lexico-grammatical Resources , 2003, IWP@ACL.

[2]  Jennifer Chu-Carroll,et al.  Answering the question you wish they had asked: The impact of paraphrasing for Question Answering , 2006, NAACL.

[3]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[4]  Aurélien Max,et al.  Sub-sentencial Paraphrasing by Contextual Pivot Translation , 2009, TextInfer@ACL.

[5]  Ming Zhou,et al.  Combining Multiple Resources to Improve SMT-based Paraphrasing Model , 2008, ACL.

[6]  John S. White,et al.  Evaluation of Machine Translation , 1993, HLT.

[7]  Regina Barzilay,et al.  Paraphrasing for Automatic Evaluation , 2006, NAACL.

[8]  Regina Barzilay,et al.  Learning to Paraphrase: An Unsupervised Approach Using Multiple-Sequence Alignment , 2003, NAACL.

[9]  Alexander F. Gelbukh,et al.  Synonymous Paraphrasing Using WordNet and Internet , 2004, NLDB.

[10]  Chris Callison-Burch,et al.  Paraphrasing with Bilingual Parallel Corpora , 2005, ACL.

[11]  Philipp Koehn,et al.  Design of the Moses Decoder for Statistical Machine Translation , 2008, SETQALNLP.

[12]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[13]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.

[14]  Ting Liu,et al.  Application-driven Statistical Paraphrase Generation , 2009, ACL.

[15]  Philipp Koehn,et al.  Improved Statistical Machine Translation Using Paraphrases , 2006, NAACL.

[16]  Haifeng Wang,et al.  Pivot Approach for Extracting Paraphrase Patterns from Bilingual Corpora , 2008, ACL.

[17]  Philipp Koehn,et al.  Pharaoh: A Beam Search Decoder for Phrase-Based Statistical Machine Translation Models , 2004, AMTA.

[18]  Kazuhide Yamamoto,et al.  Paraphrasing of Chinese Utterances , 2002, COLING.

[19]  Richard Power,et al.  Automatic generation of large-scale paraphrases , 2005, IJCNLP.

[20]  Chris Quirk,et al.  Monolingual Machine Translation for Paraphrase Generation , 2004, EMNLP.

[21]  Alain Polguère,et al.  Lexical Selection and Paraphrase in a Meaning-Text Generation Model , 1991 .

[22]  Philipp Koehn,et al.  (Meta-) Evaluation of Machine Translation , 2007, WMT@ACL.

[23]  Yi Liu,et al.  Statistical Machine Translation for Query Expansion in Answer Retrieval , 2007, ACL.

[24]  Daniel Marcu,et al.  Syntax-based Alignment of Multiple Translations: Extracting Paraphrases and Generating New Sentences , 2003, NAACL.

[25]  Hermann Ney,et al.  Improved Statistical Alignment Models , 2000, ACL.