Three-Dimensional Finite Element Superconvergent Gradient Recovery on Par6 Patterns

In this paper, we present a theoretical analysis for linear finite element su- perconvergent gradient recovery on Par6 mesh, the dual of which is centroidal Voronoi tessellations with the lowest energy per unit volume and is the congruent cell predicted by the three-dimensional Gersho's conjecture. We show that the linear finite element solution uh and the linear interpolation uI have superclose gradient on Par6 meshes. Consequently, the gradient recovered from the finite element solution by using the su- perconvergence patch recovery method is superconvergent to∇u. A numerical example is presented to verify the theoretical result. AMS subject classifications: 65N30

[1]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[2]  Bo Li,et al.  Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .

[3]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[4]  N. Sloane,et al.  The Optimal Lattice Quantizer in Three Dimensions , 1983 .

[5]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[6]  Donald J. Newman,et al.  The hexagon theorem , 1982, IEEE Trans. Inf. Theory.

[7]  Michal Krizek,et al.  Gradient superconvergence on uniform simplicial partitions of polytopes , 2003 .

[8]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[9]  Yunqing Huang,et al.  Convergent Adaptive Finite Element Method Based on Centroidal Voronoi Tessellations and Superconvergence , 2011 .

[10]  LONG CHEN,et al.  SUPERCONVERGENCE OF TETRAHEDRAL LINEAR FINITE ELEMENTS , 2005 .

[11]  Qiang Du,et al.  Finite Volume Methods on Spheres and Spherical Centroidal Voronoi Meshes , 2005, SIAM J. Numer. Anal..

[12]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[13]  D. Naylor Filling space with tetrahedra , 1999 .

[14]  M. Kriek,et al.  Superconvergence phenomena in the finite element method , 1994 .

[15]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[16]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[17]  Yunqing Huang,et al.  Centroidal Voronoi tessellation‐based finite element superconvergence , 2008 .

[18]  Qiang Du,et al.  Numerical simulations of the quantized vortices on a thin superconducting hollow sphere , 2004 .

[19]  Q. Du,et al.  The optimal centroidal Voronoi tessellations and the gersho's conjecture in the three-dimensional space , 2005 .

[20]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids , 2003, SIAM J. Numer. Anal..