The fractures-controlled tin mineralization at the end of Late Cretaceous in the Songshan deposit, southwestern China: constraints from U–Pb dating of zircon, garnet, and cassiterite

[1]  Yue-heng Yang,et al.  U-Pb isotopic dating of cassiterite: Development of reference materials and in situ applications by LA-SF-ICP-MS , 2022, Chemical Geology.

[2]  Rongqing Zhang,et al.  CASSERITE U-Pb GEOCHRONOLOGY OF THE SANTA BÁRBARA TIN DISTRICT, RONDÔNIA TIN PROVINCE, BRAZIL , 2021, Economic Geology.

[3]  A. Stepanov,et al.  The Geochronology of Tasmanian Tin Deposits Using LA-ICP-MS U-Pb Cassiterite Dating , 2021 .

[4]  F. Rios,et al.  Lithium-mica composition as pathfinder and recorder of Grenvillian-age greisenization, Rondonia Tin Province, Brazil , 2021 .

[5]  Rongqing Zhang,et al.  Monazite and cassiterite U Pb dating of the Abu Dabbab rare-metal granite, Egypt: Late Cryogenian metalliferous granite magmatism in the Arabian-Nubian Shield , 2020 .

[6]  Chao Huang,et al.  Improved in situ zircon U–Pb dating at high spatial resolution (5–16 μm) by laser ablation–single collector–sector field–ICP–MS using Jet sample and X skimmer cones , 2020 .

[7]  Fu-Yuan Wu,et al.  Origin of the Triassic Lincang granites in the southeastern Tibetan Plateau: Crystallization from crystal mush , 2020, Lithos.

[8]  M. Santosh,et al.  A Late Cretaceous felsic magmatic suite from the Tengchong Block, western Yunnan: integrated geochemical and isotopic investigation and implications for Sn mineralization , 2020, Geological Magazine.

[9]  G. Wörner,et al.  The Preparation and Preliminary Characterisation of Three Synthetic Andesite Reference Glass Materials (ARM‐1, ARM‐2, ARM‐3) for In Situ Microanalysis , 2019, Geostandards and Geoanalytical Research.

[10]  L. Neymark,et al.  U–Pb geochronology of tin deposits associated with the Cornubian Batholith of southwest England: Direct dating of cassiterite by in situ LA-ICPMS , 2019, Mineralium Deposita.

[11]  Koichiro Watanabe,et al.  Geochemistry and U–Pb geochronology of the Wagone and Hermyingyi A-type granites, southern Myanmar: Implications for tectonic setting, magma evolution and Sn–W mineralization , 2018 .

[12]  Chao Huang,et al.  U–Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry , 2018 .

[13]  Rui Xia,et al.  Constraining subduction-collision processes of the Paleo-Tethys along the Changning–Menglian Suture: New zircon U-Pb ages and Sr–Nd–Pb–Hf–O isotopes of the Lincang Batholith , 2017, Gondwana Research.

[14]  Peter A. Cawood,et al.  Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments , 2017, Earth-Science Reviews.

[15]  Rongqing Zhang,et al.  Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia) , 2017 .

[16]  Jiangfeng Qin,et al.  Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong–Nujiang Tethys ocean , 2017 .

[17]  D. Stockli,et al.  U-Pb geochronology of grossular-andradite garnet , 2017 .

[18]  Xiao-Peng Wei,et al.  Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern Myanmar, SE Asia , 2017 .

[19]  M. Searle,et al.  The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: New insights from zircon U–Pb and Hf isotope data , 2016 .

[20]  R. Tartèse,et al.  Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition , 2016 .

[21]  E. Carranza,et al.  Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning–Menglian Paleo-Tethys Orogen , 2015 .

[22]  M. Santosh,et al.  Paleoproterozoic arc magmatism in the North China Craton: No Siderian global plate tectonic shutdown , 2015 .

[23]  Qingfei Wang,et al.  Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China , 2014 .

[24]  E. Carranza,et al.  Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain: Nature, deposit types, and tectonic setting , 2014 .

[25]  R. Hu,et al.  Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China , 2014, Mineralium Deposita.

[26]  L. Yu Petrogenesis and tectonic significance of the Late Cretaceous magmatism in the northern part of the Baoshan block:Constraints from bulk geochemistry zircon U-Pb geochronology and Hf isotopic compositions , 2014 .

[27]  I. Metcalfe Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys , 2013 .

[28]  G. Dong,et al.  Zircon U–Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan, China: Implications for the closure of the Paleo-Tethys Ocean , 2013 .

[29]  B. Burchfiel,et al.  Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland , 2013 .

[30]  Sun Zhi-ming LA-ICP-MS U-Pb age of two-mica granite in the Yunlong tin-tungsten metallogenic belt in Three River region and its geological implications , 2013 .

[31]  Yigang Xu,et al.  Temporal–spatial distribution and tectonic implications of the batholiths in the Gaoligong–Tengliang–Yingjiang area, western Yunnan: Constraints from zircon U–Pb ages and Hf isotopes , 2012 .

[32]  Dong-sheng Guo Petrological and geochemical characteristics,Ar-Ar geochronology study and their tectonic significance of Triassic volcanic rocks in southern Lancangjiang zone , 2012 .

[33]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[34]  V. V. Hinsberg,et al.  Tourmaline: an ideal indicator of its host environment , 2011 .

[35]  I. Metcalfe Palaeozoic–Mesozoic history of SE Asia , 2011 .

[36]  K. Schmidt,et al.  Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U–Pb age and Nd–Sr isotope data from the southern Lancangjiang zone, Yunnan, China , 2009 .

[37]  Yang Qijun Geochronology and geochemistry of granites in the Tengliang area, western Yunnan:Tectonic implication , 2009 .

[38]  Z. Hou,et al.  Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenic epochs and deposit types , 2007 .

[39]  C. Key,et al.  Lu-Hf isotopic systematics and their applications in petrology , 2007 .

[40]  Yue-heng Yang,et al.  Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology , 2006 .

[41]  Dunyi Liu,et al.  SHRIMP ziron U-Pb geochronology of early Mesozoic felsic igneous rocks from the southern Lancangjiang and its tectonic implications , 2006 .

[42]  C. Hart,et al.  The Northern Cordilleran Mid‐Cretaceous Plutonic Province: Ilmenite/Magnetite‐series Granitoids and Intrusion‐related Mineralisation , 2004 .

[43]  Zhang Hui-hua A STUDY ON THE GRANODIORITE IN THE MIDDLE PART OF LINCANG GRANITE BATHOLITH , 2003 .

[44]  L. Dun-yi SHRIMP Dating of Carbpniferous Jinshajiang Ophiolite in Western Yunnan and Sichuan: Geochronological Constraints on the Evolution of the Paleo-Tethys Oceanic Crust , 2003 .

[45]  A. Neiva,et al.  Petrogenesis of Tin-bearing Granites from Ervedosa, Northern Portugal: The Importance of Magmatic Processes , 2002 .

[46]  G. Dunning,et al.  Petrochemistry, U–Pb (zircon) age, and palaeotectonic setting of the Lampang volcanic belt, northern Thailand , 2000, Journal of the Geological Society.

[47]  W. Griffin,et al.  The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites , 2000 .

[48]  D. Stow,et al.  The Changning-Menglian suture zone; a segment of the major Cathaysian-Gondwana divide in Southeast Asia , 1998 .

[49]  J. R. Lang,et al.  Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits , 1998 .

[50]  P. Blevin,et al.  Intrusive metallogenic provinces in eastern Australia based on granite source and composition , 1996, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[51]  Kaihui Yang,et al.  Tectono-volcanic belts and late Paleozoic-early Mesozoic evolution of southwestern Yunnan, China , 1994 .

[52]  S. Maruyama,et al.  Metamorphism and tectonic evolution of the Lancang paired metamorphic belts, south‐western China , 1993 .

[53]  P. Blevin,et al.  The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[54]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[55]  L. Changshi,et al.  The Hercynian-Indonesian collision type granites of west Yunnan and their tectonic significance , 1989 .

[56]  E. Watson,et al.  Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas , 1986 .

[57]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .