Homotopy Type and Euler Characteristic of Partially Ordered Sets

Many results about the homotopy type of posets can be conveniently proved using one topological theorem due to Quillen. This paper contains a proof of that theorem and several applications. Also included is a purely combinatorial theorem which is closely related to Quillen's theorem and which generalizes Rota's Galois connection theorem.

[1]  Jon Folkman,et al.  THE HOMOLOGY GROUPS OF A LATTICE , 1964 .

[2]  Harry Lakser,et al.  The homology of a lattice , 1971, Discret. Math..

[3]  J. Mather,et al.  INVARIANCE OF THE HOMOLOGY OF A LATTICE , 1966 .

[4]  Daniel J. Kleitman,et al.  The Structure of Sperner k-Families , 1976, J. Comb. Theory, Ser. A.

[5]  Anders Björner,et al.  A note on fixed points in semimodular lattices , 1980, Discret. Math..

[6]  H. Crapo,et al.  The Möbius function of a lattice , 1966 .

[7]  Kenneth Baclawski,et al.  Fixed points in partially ordered sets , 1979 .

[8]  Kenneth Baclawski,et al.  Fixed Points and Complements in Finite Lattices , 1981, J. Comb. Theory, Ser. A.

[9]  Paul H. Edelman Zeta Polynomials and the Möbius Function , 1980, Eur. J. Comb..

[10]  Paul H. Edelman On a fixed point theorem for partially ordered sets , 1979, Discret. Math..

[11]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[12]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[13]  E. Bender,et al.  On the Applications of Möbius Inversion in Combinatorial Analysis , 1975 .

[14]  Anders Björner,et al.  Homotopy Type of Posets and Lattice Complementation , 1981, J. Comb. Theory, Ser. A.

[15]  Ivan Rival,et al.  A Fixed Point Theorem for Finite Partially Ordered Sets , 1976, J. Comb. Theory, Ser. A.

[16]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[17]  D. Quillen,et al.  Homotopy properties of the poset of nontrivial p-subgroups of a group , 1978 .

[18]  Kenneth Baclawski,et al.  Galois connections and the leray spectral sequence , 1977 .