WARM SPITZER OBSERVATIONS OF THREE HOT EXOPLANETS: XO-4b, HAT-P-6b, AND HAT-P-8b

We analyze Warm Spitzer/Infrared Array Camera observations of the secondary eclipses of three planets, XO-4b, HAT-P-6b, and HAT-P-8b. We measure secondary eclipse amplitudes at 3.6 μm and 4.5 μm for each target. XO-4b exhibits a stronger eclipse depth at 4.5 μm than at 3.6 μm, which is consistent with the presence of a temperature inversion. HAT-P-8b shows a stronger eclipse amplitude at 3.6 μm and is best described by models without a temperature inversion. The eclipse depths of HAT-P-6b can be fitted with models with a small or no temperature inversion. We consider our results in the context of a postulated relationship between stellar activity and temperature inversion and a relationship between irradiation level and planet dayside temperature, as discussed by Knutson et al. and Cowan & Agol, respectively. Our results are consistent with these hypotheses, but do not significantly strengthen them. To measure accurate secondary eclipse central phases, we require accurate ephemerides. We obtain primary transit observations and supplement them with publicly available observations to update the orbital ephemerides of the three planets. Based on the secondary eclipse timing, we set upper boundaries for e cos(ω) for HAT-P-6b, HAT-P-8b, and XO-4b and find that the values are consistent with circular orbits.

[1]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[2]  Tokyo,et al.  HAT-P-6b: A Hot Jupiter Transiting a Bright F Star , 2007, 0710.2894.

[3]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[4]  A. Burrows,et al.  DETECTION OF A TEMPERATURE INVERSION IN THE BROADBAND INFRARED EMISSION SPECTRUM OF TrES-4 , 2008, 0810.0021.

[5]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .

[6]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[7]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[8]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[9]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[10]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[11]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[12]  Portugal,et al.  Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b , 2007, 0707.2261.

[13]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[14]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[15]  W. C. Bowman,et al.  SPITZER IRAC SECONDARY ECLIPSE PHOTOMETRY OF THE TRANSITING EXTRASOLAR PLANET HAT-P-1b , 2009, 0911.2218.

[16]  B. Jackson,et al.  RECENT TRANSITS OF THE SUPER-EARTH EXOPLANET GJ 1214b , 2010, 1008.1748.

[17]  Drake Deming,et al.  STUDYING THE ATMOSPHERE OF THE EXOPLANET HAT-P-7b VIA SECONDARY ECLIPSE MEASUREMENTS WITH EPOXI, SPITZER, AND KEPLER , 2009, 0912.2132.

[18]  A. Collier Cameron,et al.  Thermal emission at 4.5 and 8 μm of WASP-17b, an extremely large planet in a slightly eccentric orbit , 2011, 1101.5620.

[19]  Joseph L. Hora,et al.  A ccepted forpublication in The A strophysicalJournal D etection of T herm alE m ission of X O -2b: E vidence for a W eak Tem perature Inversion , 2022 .

[20]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[21]  Howard Isaacson,et al.  KEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHT CURVE VALIDATION, WARM-SPITZER PHOTOMETRY, AND RADIAL VELOCITY MEASUREMENTS , 2011, 1110.0820.

[22]  A. Burrows,et al.  ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2 , 2010, 1006.1660.

[23]  D. Queloz,et al.  Detection of a transit of the super-Earth 55 Cancri e with warm Spitzer , 2011, 1105.0415.

[24]  Joseph L. Hora,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THERMAL EMISSION OF EXOPLANET XO-1B , 2022 .

[25]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[26]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[27]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[28]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[29]  Drake Deming,et al.  THE BROADBAND INFRARED EMISSION SPECTRUM OF THE EXOPLANET TrES-3 , 2009, 0909.5221.

[30]  K. Schlaufman,et al.  EVIDENCE OF POSSIBLE SPIN–ORBIT MISALIGNMENT ALONG THE LINE OF SIGHT IN TRANSITING EXOPLANET SYSTEMS , 2010, 1006.2851.

[31]  Leslie Hebb,et al.  ON THE ORBIT OF EXOPLANET WASP-12b , 2010, 1003.2763.

[32]  S. Baliunas,et al.  Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .

[33]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[34]  A. Barker,et al.  On the tidal evolution of Hot Jupiters on inclined orbits , 2009, 0902.4563.

[35]  Nikole K. Lewis,et al.  WARM SPITZER PHOTOMETRY OF THE TRANSITING EXOPLANETS CoRoT-1 AND CoRoT-2 AT SECONDARY ECLIPSE , 2010, 1011.1019.

[36]  R. Kurucz Model atmospheres for G, F, A, B, and O stars , 1979 .

[37]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[38]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[39]  A. P. Showman,et al.  The Influence of Atmospheric Dynamics on the Infrared Spectra and Light Curves of Hot Jupiters , 2006 .

[40]  Joshua N. Winn,et al.  The Rossiter–McLaughlin Effect of the Transiting Exoplanet XO-4b , 2010, 1008.3803.

[41]  E. Agol,et al.  SECONDARY ECLIPSE PHOTOMETRY OF WASP-4b WITH WARM SPITZER , 2010, 1011.4066.

[42]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[43]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[44]  F. Fressin,et al.  THE ATMOSPHERES OF THE HOT-JUPITERS KEPLER-5b AND KEPLER-6b OBSERVED DURING OCCULTATIONS WITH WARM-SPITZER AND KEPLER , 2011, 1102.0555.

[45]  A. Santerne,et al.  The retrograde orbit of the HAT-P-6b exoplanet , 2011, 1101.5009.

[46]  R. Paul Butler,et al.  DISCOVERY OF A TRANSITING PLANET AND EIGHT ECLIPSING BINARIES IN HATNet FIELD G205 , 2009 .

[47]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[48]  Richard Elston,et al.  FLAMINGOS: a multiobject near-IR spectrometer , 1998, Astronomical Telescopes and Instrumentation.