In Situ Spectroscopic Investigation of the Molecular and Electronic Structures of SiO2 Supported Surface Metal Oxides

Groups 5−7 transition metal oxides (V2O5, Nb2O5, Ta2O5, CrO3, MoO3, WO3, Re2O7) were anchored on a SiO2 support via incipient wetness impregnation and calcination. The molecular and electronic structures of the dehydrated supported metal oxides and the SiO2 support were determined by combined in situ Raman, IR, and UV−vis spectroscopy under dehydrated conditions. In situ Raman characterization reveals that the supported metal oxides are only present as surface species below the maximum dispersion limit (where crystalline metal oxide nanoparticles are absent). In situ IR analysis shows that the surface metal oxides anchor to the SiO2 support at Si−OH and adjacent Si−O−Si sites. The corresponding in situ UV−vis diffuse reflectance spectroscopy indicates that the dehydrated surface metal oxide species are present as isolated structures. Isotopic D2O−H2O exchange demonstrates that the dehydrated surface MOx species possess the MO oxo functionality but no MOH bonds. The number of MO oxo bonds was found to be r...

[1]  A. Stiegman,et al.  Coordination Environment and Vibrational Spectroscopy of Cr(VI) Sites Supported on Amorphous Silica , 2006 .

[2]  M. Bañares,et al.  Dynamic states of V‐oxide species: reducibility and performance for methane oxidation on V2O5/SiO2 catalysts as a function of coverage , 2000 .

[3]  M. Cieślak-Golonka Spectroscopy of chromium(VI) species , 1991 .

[4]  Bert M. Weckhuysen,et al.  Supported Tantalum Oxide and Supported Vanadia-tantala Mixed Oxides: Structural Characterization and Surface Properties , 2001 .

[5]  S. Bare,et al.  Surface Structures of Supported Molybdenum Oxide Catalysts: Characterization by Raman and Mo L3-Edge XANES , 1995 .

[6]  Pandya Multiple-scattering effects in x-ray-absorption fine structure: Chromium in a tetrahedral configuration. , 1994, Physical Review B (Condensed Matter).

[7]  A. A. Davydov,et al.  Molecular Spectroscopy of Oxide Catalyst Surfaces , 2003 .

[8]  M. Islam,et al.  Defect and dopant properties of MgTa2O6 , 2004 .

[9]  B. Weckhuysen,et al.  Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides. , 1996, Chemical reviews.

[10]  J. Tatibouët,et al.  Surface structure and reactivity of CrO3/SiO2 catalysts , 1992 .

[11]  B. Weckhuysen,et al.  MCM-48-Supported Vanadium Oxide Catalysts, Prepared by the Molecular Designed Dispersion of VO(acac)2: A Detailed Study of the Highly Reactive MCM-48 Surface and the Structure and Activity of the Deposited VOx , 2001 .

[12]  A. Wokaun,et al.  Spectroscopic investigation of the structure of silica-supported vanadium oxide catalysts at submonolayer coverages , 1991 .

[13]  G. M. Zhidomirov,et al.  Models of finely dispersed MgO and V2O5 on silica. Theoretical analysis of optical properties using TDDFT , 2004 .

[14]  I. Wachs,et al.  In Situ Vibrational Spectroscopy Studies of Supported Niobium Oxide Catalysts , 1999 .

[15]  J. Jehng,et al.  Structural characteristics and reactivity properties of the tantalum modified mesoporous silicalite (MCM-41) catalysts , 2007 .

[16]  G. Somorjai,et al.  Effect of structure in selective oxide catalysis: oxidation reactions of ethanol and ethane on vanadium oxide , 1990 .

[17]  M. Bañares,et al.  Preparation and in-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium Oxide on Silica , 1998 .

[18]  R. Weber Effect of Local Structure on the UV-Visible Absorption Edges of Molybdenum Oxide Clusters and Supported Molybdenum Oxides , 1995 .

[19]  Y. Iwasawa Characterization and chemical design of oxide surfaces , 1996 .

[20]  M. Bañares,et al.  The partial oxidation of methane on MoO3/SiO2 catalysts : influence of the molybdenum content and type of oxidant , 1993 .

[21]  D. E. Keller,et al.  LambdaO4 upside down: a new molecular structure for supported VO4 catalysts. , 2005, The journal of physical chemistry. B.

[22]  John S. O. Evans,et al.  Pressure-induced cubic-to-orthorhombic phase transition in ZrW 2 O 8 , 1999 .

[23]  I. Wachs,et al.  Quantification of Active Sites for the Determination of Methanol Oxidation Turn-over Frequencies Using Methanol Chemisorption and in Situ Infrared Techniques. 1. Supported Metal Oxide Catalysts , 2001 .

[24]  K. Kawai,et al.  Raman spectrum and normal co-ordinate analysis of chromyl chloride* , 1959 .

[25]  T. Srinivasan,et al.  Mechanically Activated MoO3. 3. Characterization by Vibrational Spectroscopy , 1995 .

[26]  M. A. Vuurman,et al.  Structural determination of surface rhenium oxide on various oxide supports (Al2O3, ZrO2, TiO2 and SiO2) , 1992 .

[27]  M. White,et al.  The effect of water on the structure of supported vanadium oxide structures. An FT-RAMAN, in situ DRIFT and in situ UV-VIS diffuse reflectance study , 1997 .

[28]  Bert M. Weckhuysen,et al.  In Situ Raman Spectroscopy of Supported Transition Metal Oxide Catalysts: 18O2−16O2 Isotopic Labeling Studies , 2000 .

[29]  Weimin Zhang,et al.  Effect of Support in Ethanol Oxidation on Molybdenum Oxide , 1995 .

[30]  P. McMillan Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy , 1984 .

[31]  R. J. Brown,et al.  Refinement of Ammonium Perrhenate Structure Using a Pseudo-Spin Model for the Ammonium Ion Orientation , 1997 .

[32]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[33]  Tsunehiro Tanaka,et al.  Photocatalytic oxidation of propylene with molecular oxygen over highly dispersed titanium, vanadium, and chromium oxides on silica. , 2006, The journal of physical chemistry. B.

[34]  G. Deo,et al.  In situ IR, Raman, and UV-Vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation , 2000 .

[35]  Hanjing Tian,et al.  Comparison of UV and visible Raman spectroscopy of bulk metal molybdate and metal vanadate catalysts. , 2005, The journal of physical chemistry. B.

[36]  J. S. Stephens,et al.  A re‐investigation of the crystal structure of (NH4)2CrO4 , 1970 .

[37]  E. I. Ko,et al.  Structural and acidic characterization of niobia aerogels , 1992 .

[38]  T. Yoko,et al.  VIBRATIONAL DYNAMICS OF DEFECT MODES IN VITREOUS SILICA , 1998 .

[39]  M. Baerns,et al.  Role of surface acidity on vanadia/silica catalysts used in the oxidative dehydrogenation of ethane , 1992 .

[40]  A. Stiegman,et al.  Raman spectroscopy of discrete silica supported vanadium oxide: assignment of fundamental stretching modes , 2005 .

[41]  G. Busca,et al.  Characterization of the surface properties of polycrystalune WO3 , 1990 .

[42]  F. Solymosi,et al.  Partial oxidation of ethane over supported vanadium pentoxide catalysts , 1990 .

[43]  M. Shirai,et al.  Surface structures and catalytic properties of supported niobium oxides , 1996 .

[44]  A. Bell,et al.  DFT Studies of the Structure and Vibrational Spectra of Isolated Molybdena Species Supported on Silica , 2009 .

[45]  Andreas Martin,et al.  Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde , 2000 .

[46]  B. Weckhuysen,et al.  COMBINED DRS-RS-EXAFS-XANES-TPR STUDY OF SUPPORTED CHROMIUM CATALYSTS , 1995 .

[47]  C. Ambrosch-Draxl,et al.  Bonding and physical properties of the scheelite-type materials AgReO4 and NaReO4 , 2003 .

[48]  L. Huang,et al.  Oxygen chemisorption and laser Raman spectroscopy of unsupported and silica-supported molybdenum oxide , 1991 .

[49]  B. A. Morrow,et al.  Chemical reactions at silica surfaces , 1990 .

[50]  K. Segawa,et al.  Molecular Structures and Reactivity of Supported Molybdenum Oxide Catalysts , 1994 .

[51]  Tsunehiro Tanaka,et al.  Molecular structure and reactivity of the group V metal oxides , 2000 .

[52]  B. Weckhuysen,et al.  Surface chemistry of silica–titania-supported chromium oxide catalysts , 1995 .

[53]  M. Sanati,et al.  Catalytic and spectroscopic studies of vanadium oxide supported on group IVb and Vb metal oxides for oxidation of toluene , 1993 .

[54]  M. Bañares,et al.  Molybdena on Silica Catalysts: Role of Preparation Methods on the Structure-Selectivity Properties for the Oxidation of Methanol , 1994 .

[55]  R. Mattes Schwingungsspektren und Kraftkonstanten von Chrom(VI)‐Sauerstoff‐Verbindungen , 1971 .

[56]  S. Senz,et al.  Topotaxial formation of Mg4Ta2O9 and MgTa2O6 thin films by vapour-solid reactions on MgO (001) crystals , 2004 .

[57]  F. Hardcastle,et al.  Raman spectroscopy of chromium oxide supported on Al2O3, TiO2 and SiO2: a comparative study , 1988 .

[58]  C. Lamberti,et al.  New strategies in the raman study of the Cr/SiO2 phillips catalyst : Observation of molecular adducts on Cr(II) sites , 2005 .

[59]  J. Lavalley,et al.  Structure of Mo catalysts supported on silica: IR and gravimetric results , 1986 .

[60]  C. Lamberti,et al.  The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods. , 2005, Chemical reviews.

[61]  J. Ekerdt,et al.  Preparation and characterization of WO3/SiO2 catalysts , 1995 .

[62]  H. Eckert,et al.  Bonding states of surface vanadium(V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy , 1993 .

[63]  A. Müller,et al.  Normalkoordinatenanalyse von ReO3N2−, ReO3S−, ReO3,Cl und ReO3Br , 1967 .

[64]  M. A. Vuurman,et al.  Characterization of chromium oxide supported on Al2O3, ZrO2, TiO2, and SiO2 under dehydrated conditions , 1993 .

[65]  J. Ekerdt,et al.  Monolayer dispersion of molybdenum on silica , 1992 .

[66]  I. Wachs Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts , 1996 .

[67]  G. Deo,et al.  Reactivity of supported vanadium oxide catalysts: The partial oxidation of methanol , 1994 .

[68]  J. Dubois,et al.  Study of new catalysts based on vanadium oxide supported on mesoporous silica for the partial oxidation of methane to formaldehyde: Catalytic properties and reaction mechanism , 2006 .

[69]  N. Spencer,et al.  The effect of sodium on the MoO3$z.sbnd;SiO2-catalyzed partial oxidation of methane , 1990 .

[70]  B. Weckhuysen,et al.  In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: Reactivity Studies with Methanol and Butane , 1996 .

[71]  A. Poater,et al.  Catalysis Science and Technology , 2022 .

[72]  C. Mande,et al.  Determination of bond lengths in some compounds of rhenium from the x-ray LIII absorption discontinuity , 1973 .

[73]  B. Delmon,et al.  Influence of the amount of titania on the texture and structure of titania supported on silica , 1996 .

[74]  Alexis T Bell,et al.  A study of the redox properties of MoOx/SiO2. , 2005, The journal of physical chemistry. B.

[75]  H. Kung,et al.  The effect of loading of vanadia on silica in the oxidation of butane , 1993 .

[76]  J. Fierro,et al.  Supported Tantalum Oxide Catalysts: Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction , 2003 .

[77]  Alexis T. Bell,et al.  Laser raman spectroscopy of supported vanadium oxide catalysts , 1990 .

[78]  J. Ekerdt,et al.  Role of silanol groups in dispersing Mo(VI) on silica , 1992 .

[79]  K. Wada,et al.  Vapor-Phase Beckmann Rearrangement over Silica-Supported Tantalum Oxide Catalysts , 1994 .

[80]  Richard A. Crocombe,et al.  Vibrational spectra of matrix-isolated rhenium trifluoride dioxide and rhenium fluoride trioxide: the molecular shape of ReF3O2 , 1977 .

[81]  J. Sauer,et al.  Oxidation of methanol to formaldehyde on supported vanadium oxide catalysts compared to gas phase molecules. , 2005, Journal of the American Chemical Society.

[82]  I. Wachs,et al.  Surface chemistry of supported chromium oxide catalysts , 1993 .

[83]  Kiyotaka Asakura,et al.  Variability in the Structure of Supported MoO3 Catalysts: Studies Using Raman and X-ray Absorption Spectroscopy with ab Initio Calculations , 2001 .

[84]  M. Kakihana,et al.  Preparation of LiTaO3 powders at reduced temperatures by a polymerized complex method , 1998 .

[85]  M. Bäumer,et al.  Vibrational spectra of alumina- and silica-supported vanadia revisited: An experimental and theoretical model catalyst study , 2004 .

[86]  I. Wachs Molecular Structures of Surface Metal Oxide Species: Nature of Catalytic Active Sites in Mixed Metal Oxides , 2005 .

[87]  J. Haber Crystallography of Catalyst Types , 1981 .

[88]  K. Schmidt,et al.  Schwingungsspektrum und normalkoordinatenanalyse von CrO3Br− zur zuordnung der schwingungsspektren von molekülen und ionen des typs MO3Xn− (M = Cr, Mn, Tc, Re; X = F, Cl, Br, S; n = 0,1) , 1973 .

[89]  Tsunehiro Tanaka,et al.  Structure of surface tantalate species and photo-oxidation of carbon monoxide over silica-supported tantalum oxide , 1999 .

[90]  F. L. Galeener,et al.  Vibrational dynamics in 30 Si-substituted vitreous SiO 2 , 1981 .

[91]  M. Bañares,et al.  Molecular structures of supported metal oxide catalysts under different environments , 2002 .

[92]  H. Becher Ramanspektroskopische Untersuchungen zur gegenseitigen Substituierbarkeit von Mo und W in wasserfreien Polymolybdaten und Polywolframaten , 1981 .

[93]  J. Jehng,et al.  Structural chemistry and Raman spectra of niobium oxides , 1991 .

[94]  C. Brinker,et al.  NMR confirmation of strained “defects” in amorphous silica , 1988 .

[95]  D. C. Koningsberger,et al.  Remarkable spreading behavior of molybdena on silica catalysts. Anin situ EXAFS-Raman study , 1991 .

[96]  J. Ying,et al.  Structural and Reactivity Properties of Nb-MCM-41: Comparison with That of Highly Dispersed Nb2O5/SiO2 Catalysts , 2001 .

[97]  H. Eckert,et al.  Solid-state vanadium-51 NMR structural studies on supported vanadium(V) oxide catalysts: vanadium oxide surface layers on alumina and titania supports , 1989 .

[98]  T. J. Dines,et al.  Raman spectroscopic study of supported chromium(vi) oxide catalysts , 2003 .

[99]  S. Ted Oyama,et al.  Oxygen chemisorption and laser Raman spectroscopy of unsupported and silica-supported vanadium oxide catalysts , 1989 .

[100]  M. Bañares,et al.  Identification and roles of the different active sites in supported vanadia catalysts by in situ techniques , 2000 .

[101]  W. Li,et al.  Stability of hydroxyl and methoxy surface groups on silica aerogels , 1997 .

[102]  G. Busca,et al.  Comparison of alcohol and alkane oxidative dehydrogenation reactions over supported vanadium oxide catalysts: in situ infrared, Raman and UV–vis spectroscopic studies of surface alkoxide intermediates and of their surface chemistry , 2005 .

[103]  M. Anpo,et al.  Local structures and photocatalytic reactivities of the titanium oxide and chromium oxide species incorporated within micro- and mesoporous zeolite materials: XAFS and photoluminescence studies , 2003 .

[104]  G. Busca Differentiation of mono‐oxo and polyoxo and of monomeric and polymeric vanadate, molybdate and tungstate species in metal oxide catalysts by IR and Raman spectroscopy , 2002 .

[105]  F. Hardcastle,et al.  Determination of molybdenum–oxygen bond distances and bond orders by Raman spectroscopy , 1990 .

[106]  J. Jehng,et al.  Molecular structures of supported niobium oxide catalysts under in situ conditions , 1991 .

[107]  G. Somorjai,et al.  Kinetics of ethane oxidation on vanadium oxide , 1990 .

[108]  Y. Iwasawa,et al.  Dynamic Behaviour of Active Sites of a SiO2-Attached Mo(VI)-Dimer Catalyst during Ethanol Oxidation Observed by Means of EXAFS , 1985 .

[109]  A. Baiker,et al.  Influence of the A-site cation in ACoO3 (A = La, Pr, Nd, and Gd) perovskite-type oxides on catalytic activity for methane combustion , 1994 .

[110]  C. Lock,et al.  A reinvestigation of the crystal structure of potassium perrhenate , 1975 .

[111]  G. Busca,et al.  FT-IR study of the surface properties of polycrystalline vanadia , 1989 .

[112]  I. Wachs Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials , 2005 .