Thermal emission at 4.5 and 8 μm of WASP-17b, an extremely large planet in a slightly eccentric orbit

We report the detection of thermal emission at 4.5 and 8 mu m from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its host star. By combining the resulting light curves with existing transit light curves and radial-velocity measurements in a simultaneous analysis, we find the radius of WASP-17b to be 2.0R(Jup), which is 0.2R(Jup) larger than any other known planet and 0.7R(Jup) larger than predicted by the standard cooling theory of irradiated gas giant planets. We find the retrograde orbit of WASP-17b to be slightly eccentric, with 0.0012 < e < 0.070 (3 sigma). Such a low eccentricity suggests that, under current models, tidal heating alone could not have bloated the planet to its current size, so the radius of WASP-17b is currently unexplained. From the measured planet-star flux-density ratios we infer 4.5 and 8 mu m brightness temperatures of 1881 +/- 50 and 1580 +/- 150 K, respectively, consistent with a low-albedo planet that efficiently redistributes heat from its day side to its night side.

[1]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[2]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[3]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[4]  A. Collier Cameron,et al.  H-band thermal emission from the 19-h period planet WASP-19b , 2010, 1002.1947.

[5]  Konstantin Batygin,et al.  INFLATING HOT JUPITERS WITH OHMIC DISSIPATION , 2010, 1002.3650.

[6]  R. G. West,et al.  WASP-17b: AN ULTRA-LOW DENSITY PLANET IN A PROBABLE RETROGRADE ORBIT , 2009, 0908.1553.

[7]  R. G. West,et al.  Efficient identification of exoplanetary transit candidates from SuperWASP light curves , 2007, 0707.0417.

[8]  Stephen R. Kane,et al.  The thermal emission of the exoplanets WASP-1b and WASP-2b , 2010, 1004.0836.

[9]  D. Bayliss,et al.  CONFIRMATION OF A RETROGRADE ORBIT FOR EXOPLANET WASP-17b , 2010, 1009.5061.

[10]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[11]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[12]  Kristen Menou,et al.  MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS , 2010, 1003.3838.

[13]  Eric B. Ford,et al.  Improving the Efficiency of Markov Chain Monte Carlo for Analyzing the Orbits of Extrasolar Planets , 2005, astro-ph/0512634.

[14]  Astronomy Department,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane I. From the ZAMS to the TP-A , 2008, 0803.1460.

[15]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[16]  Richard Greenberg,et al.  Tidal Heating of Extrasolar Planets , 2008, 0803.0026.

[17]  Peter H. Hauschildt,et al.  Phase-dependent Properties of Extrasolar Planet Atmospheres , 2005 .

[18]  T. Barman On the Presence of Water and Global Circulation in the Transiting Planet HD 189733b , 2008, 0802.0854.

[19]  F. Courbin,et al.  Deconvolution with Correct Sampling , 1997, astro-ph/9704059.

[20]  M. Nagasawa,et al.  Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism , 2008, 0801.1368.

[21]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[22]  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[23]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[24]  Drake Deming,et al.  THE BROADBAND INFRARED EMISSION SPECTRUM OF THE EXOPLANET TrES-3 , 2009, 0909.5221.

[25]  Andrew N. Youdin,et al.  THE MECHANICAL GREENHOUSE: BURIAL OF HEAT BY TURBULENCE IN HOT JUPITER ATMOSPHERES , 2010, 1008.0645.

[26]  S. Balachandran The Lithium Dip in M67: Comparison with the Hyades, Praesepe, and NGC 752 Clusters , 1995 .

[27]  Adam Burrows,et al.  EXPLORATIONS INTO THE VIABILITY OF COUPLED RADIUS–ORBIT EVOLUTIONARY MODELS FOR INFLATED PLANETS , 2009, 0910.5928.

[28]  P. Magain,et al.  A deconvolution-based algorithm for crowded field photometry with unknown point spread function , 2006, astro-ph/0609600.

[29]  Adam Burrows,et al.  TIDAL HEATING MODELS FOR THE RADII OF THE INFLATED TRANSITING GIANT PLANETS WASP-4b, WASP-6b, WASP-12b, WASP-15b, AND TrES-4 , 2009, 0910.4394.

[30]  R. G. West,et al.  WASP-3b: a strongly irradiated transiting gas-giant planet , 2007, 0711.0126.

[31]  B. Scott Gaudi,et al.  Prospects for the Characterization and Confirmation of Transiting Exoplanets via the Rossiter-McLaughlin Effect , 2006, astro-ph/0608071.

[32]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[33]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[34]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[35]  A. Collier Cameron,et al.  An improved method for estimating the masses of stars with transiting planets , 2010, 1004.1991.

[36]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[37]  Steve B. Howell,et al.  TWO-DIMENSIONAL APERTURE PHOTOMETRY: SIGNAL-TO-NOISE RATIO OF POINT-SOURCE OBSERVATIONS AND OPTIMAL DATA-EXTRACTION TECHNIQUES , 1989 .

[38]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[39]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[40]  Jun Yu Li,et al.  CIRCULATION AND DISSIPATION ON HOT JUPITERS , 2010, 1005.0589.

[41]  Adam Burrows,et al.  COUPLED EVOLUTION WITH TIDES OF THE RADIUS AND ORBIT OF TRANSITING GIANT PLANETS: GENERAL RESULTS , 2009, 0902.3998.

[42]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[43]  Richard Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2008 .

[44]  Martin G. Cohen,et al.  Absolute Calibration of the Infrared Array Camera on the Spitzer Space Telescope , 2005, astro-ph/0507139.

[45]  Benjamin Levrard,et al.  Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity , 2010, 1004.0463.

[46]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[47]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[48]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[49]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[50]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[51]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[52]  C. Moutou,et al.  High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method , 2006 .