Another kind of 'BOLD Response': answering multiple-choice questions via online decoded single-trial brain signals.

[1]  Jong-Hwan Lee,et al.  Automated classification of fMRI data employing trial-based imagery tasks , 2009, Medical Image Anal..

[2]  R. Veit,et al.  Self‐regulation of regional cortical activity using real‐time fMRI: The right inferior frontal gyrus and linguistic processing , 2009, Human brain mapping.

[3]  Han-Jeong Hwang,et al.  Neurofeedback-based motor imagery training for brain–computer interface (BCI) , 2009, Journal of Neuroscience Methods.

[4]  A. Kübler,et al.  A Brain–Computer Interface Controlled Auditory Event‐Related Potential (P300) Spelling System for Locked‐In Patients , 2009, Annals of the New York Academy of Sciences.

[5]  Tom Chau,et al.  Decoding subjective preference from single-trial near-infrared spectroscopy signals , 2009, Journal of neural engineering.

[6]  F. Jolesz,et al.  Brain–machine interface via real-time fMRI: Preliminary study on thought-controlled robotic arm , 2009, Neuroscience Letters.

[7]  L. Cohen,et al.  Brain–computer interface in paralysis , 2008, Current opinion in neurology.

[8]  Abbas Erfanian,et al.  Improving the performance of brain-computer interface through meditation practicing , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  N. Birbaumer,et al.  A brain–computer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis , 2008, Clinical Neurophysiology.

[10]  R. DeCharms Applications of real-time fMRI , 2008, Nature Reviews Neuroscience.

[11]  J. Wolpaw,et al.  A P300-based brain–computer interface for people with amyotrophic lateral sclerosis , 2008, Clinical Neurophysiology.

[12]  Steven Laureys,et al.  Que mesure la neuro-imagerie fonctionnelle: IRMf, TEP & MEG? , 2008 .

[13]  Steve Majerus,et al.  Cognitive function in the locked-in syndrome , 2008, Journal of Neurology.

[14]  Ethan R. Buch,et al.  Think to Move: a Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke , 2008, Stroke.

[15]  M. Boly,et al.  [Functional neuroimaging (fMRI, PET and MEG): what do we measure?]. , 2008, Revue medicale de Liege.

[16]  Steven Laureys,et al.  Locked-in: don’t judge a book by its cover , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[17]  R. DeCharms,et al.  Reading and controlling human brain activation using real-time functional magnetic resonance imaging , 2007, Trends in Cognitive Sciences.

[18]  Xiaoping P. Hu,et al.  Real‐time fMRI using brain‐state classification , 2007, Human brain mapping.

[19]  Masashi Kiguchi,et al.  A Communication Means for Totally Locked-in ALS Patients Based on Changes in Cerebral Blood Volume Measured with Near-Infrared Light , 2007, IEICE Trans. Inf. Syst..

[20]  Jonathan R Wolpaw,et al.  Brain–computer interface systems: progress and prospects , 2007, Expert review of medical devices.

[21]  R. Deichmann,et al.  Real-time functional magnetic resonance imaging: methods and applications. , 2007, Magnetic resonance imaging.

[22]  Niels Birbaumer,et al.  fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment , 2007, Comput. Intell. Neurosci..

[23]  J. A. Wilson,et al.  Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Report of four cases. , 2007, Journal of neurosurgery.

[24]  L. Cohen,et al.  Brain–computer interfaces: communication and restoration of movement in paralysis , 2007, The Journal of physiology.

[25]  Cuntai Guan,et al.  Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface , 2007, NeuroImage.

[26]  F. Irani,et al.  Functional Near Infrared Spectroscopy (fNIRS): An Emerging Neuroimaging Technology with Important Applications for the Study of Brain Disorders , 2007, The Clinical neuropsychologist.

[27]  A. Karim,et al.  Neural Internet: Web Surfing with Brain Potentials for the Completely Paralyzed , 2006, Neurorehabilitation and neural repair.

[28]  Andrew B. Schwartz,et al.  Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics , 2006, Neuron.

[29]  Yoshio Tanaka,et al.  Real-time functional MRI: development and emerging applications. , 2006, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[30]  Ivo Vanzetta,et al.  Hemodynamic responses in cortex investigated with optical imaging methods. Implications for functional brain mapping , 2006, Journal of Physiology-Paris.

[31]  Matthew H. Davis,et al.  Detecting Awareness in the Vegetative State , 2006, Science.

[32]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.

[33]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[34]  N. Ramsey,et al.  Towards human BCI applications based on cognitive brain systems: an investigation of neural signals recorded from the dorsolateral prefrontal cortex , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[35]  Rajesh P. N. Rao,et al.  Electrocorticography-based brain computer Interface-the seattle experience , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[36]  John D E Gabrieli,et al.  Control over brain activation and pain learned by using real-time functional MRI. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Nikolaus Weiskopf,et al.  Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI , 2005, NeuroImage.

[38]  Andrea Kübler,et al.  Brain-computer interfaces--the key for the conscious brain locked into a paralyzed body. , 2005, Progress in brain research.

[39]  Steve Majerus,et al.  Behavioral evaluation of consciousness in severe brain damage. , 2005, Progress in brain research.

[40]  Steven Laureys,et al.  The locked-in syndrome : what is it like to be conscious but paralyzed and voiceless? , 2005, Progress in brain research.

[41]  Steven Laureys,et al.  Brain function in coma, vegetative state, and related disorders , 2004, The Lancet Neurology.

[42]  Shirley Coyle,et al.  On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces. , 2004, Physiological measurement.

[43]  R. Veit,et al.  Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI) , 2004, Journal of Physiology-Paris.

[44]  Wolfgang Grodd,et al.  Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) , 2004, IEEE Transactions on Biomedical Engineering.

[45]  Soo-Young Lee,et al.  Brain–computer interface using fMRI: spatial navigation by thoughts , 2004, Neuroreport.

[46]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[47]  F. Gerstenbrand,et al.  Varieties of the locked-in syndrome , 1979, Journal of Neurology.

[48]  Rainer Goebel,et al.  Real-time independent component analysis of fMRI time-series , 2003, NeuroImage.

[49]  Michael Erb,et al.  Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data , 2003, NeuroImage.

[50]  G Pfurtscheller,et al.  Frequency Component Selection for an ECoG-based Brain-Computer Interface. Auswahl von Frequenzkomponenten aus ECoG-Signalen zur Steuerung eines Brain Computer Interface , 2003, Biomedizinische Technik. Biomedical engineering.

[51]  J. Leon-Carrion,et al.  Review of subject: The locked-in syndrome: a syndrome looking for a therapy , 2002, Brain injury.

[52]  G. R. Muller,et al.  Brain oscillations control hand orthosis in a tetraplegic , 2000, Neuroscience Letters.

[53]  Ravi S. Menon,et al.  Spatial and temporal limits in cognitive neuroimaging with fMRI , 1999, Trends in Cognitive Sciences.

[54]  H. Flor,et al.  A spelling device for the paralysed , 1999, Nature.

[55]  N. Birbaumer,et al.  The thought translation device: a neurophysiological approach to communication in total motor paralysis , 1999, Experimental Brain Research.

[56]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[57]  A. Villringer,et al.  Non-invasive optical spectroscopy and imaging of human brain function , 1997, Trends in Neurosciences.

[58]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[60]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[61]  R. C. Oldfield THE ASSESSMENT AND ANALYSIS OF HANDEDNESS , 1971 .