Log-exponential analogues of univariate subdivision schemes in Lie groups and their smoothness properties

The necessity to process data which live in nonlinear ge- ometries (e.g. motion capture data, unit vectors, subspaces, positive definite matrices) has led to some recent developments in nonlinear multiscale representation and subdivision algorithms. The present paper analyzes convergence and C 1 and C 2 smoothness of subdivi- sion schemes which operate in matrix groups or general Lie groups, and which are defined by the so-called log-exponential analogy. It is shown that a large class of such schemes has essentially the same smoothness as the linear schemes they are derived from. This work extends previous work on Lie group subdivision schemes - we con- sider alternative definitions of analogous schemes, arbitrary dilation factors, and symmetry of the nonlinear scheme.

[1]  Ben M. Herbst,et al.  Dubuc-Deslauriers Subdivision for Finite Sequences and Interpolation Wavelets on an Interval , 2003, SIAM J. Math. Anal..

[2]  Johannes Wallner Smoothness Analysis of Subdivision Schemes by Proximity , 2006 .

[3]  D. Levin,et al.  Analysis of asymptotically equivalent binary subdivision schemes , 1995 .

[4]  Eckhard Meinrenken,et al.  LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[5]  A. L. Onishchik,et al.  Lie Groups and Lie Algebras III , 1993 .

[6]  Johannes Wallner,et al.  Intrinsic subdivision with smooth limits for graphics and animation , 2006, TOGS.

[7]  T. Yu,et al.  Smoothness Analysis of Nonlinear Subdivision Schemes of Homogeneous and Affine Invariant Type , 2005 .

[8]  Nira Dyn,et al.  Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..

[9]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[10]  I. Daubechies,et al.  Normal Multiresolution Approximation of Curves , 2004 .

[11]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[12]  Johannes Wallner,et al.  Smoothness Properties of Lie Group Subdivision Schemes , 2007, Multiscale Model. Simul..

[13]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[14]  Gang Xie,et al.  Smoothness Equivalence Properties of Manifold-Valued Data Subdivision Schemes Based on the Projection Approach , 2007, SIAM J. Numer. Anal..

[15]  Philipp Grohs,et al.  Smoothness Analysis of Subdivision Schemes on Regular Grids by Proximity , 2008, SIAM J. Numer. Anal..

[16]  Peter Schröder,et al.  Multiscale Representations for Manifold-Valued Data , 2005, Multiscale Model. Simul..