Log-exponential analogues of univariate subdivision schemes in Lie groups and their smoothness properties
暂无分享,去创建一个
[1] Ben M. Herbst,et al. Dubuc-Deslauriers Subdivision for Finite Sequences and Interpolation Wavelets on an Interval , 2003, SIAM J. Math. Anal..
[2] Johannes Wallner. Smoothness Analysis of Subdivision Schemes by Proximity , 2006 .
[3] D. Levin,et al. Analysis of asymptotically equivalent binary subdivision schemes , 1995 .
[4] Eckhard Meinrenken,et al. LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.
[5] A. L. Onishchik,et al. Lie Groups and Lie Algebras III , 1993 .
[6] Johannes Wallner,et al. Intrinsic subdivision with smooth limits for graphics and animation , 2006, TOGS.
[7] T. Yu,et al. Smoothness Analysis of Nonlinear Subdivision Schemes of Homogeneous and Affine Invariant Type , 2005 .
[8] Nira Dyn,et al. Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..
[9] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[10] I. Daubechies,et al. Normal Multiresolution Approximation of Curves , 2004 .
[11] David L. Donoho,et al. Interpolating Wavelet Transforms , 1992 .
[12] Johannes Wallner,et al. Smoothness Properties of Lie Group Subdivision Schemes , 2007, Multiscale Model. Simul..
[13] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[14] Gang Xie,et al. Smoothness Equivalence Properties of Manifold-Valued Data Subdivision Schemes Based on the Projection Approach , 2007, SIAM J. Numer. Anal..
[15] Philipp Grohs,et al. Smoothness Analysis of Subdivision Schemes on Regular Grids by Proximity , 2008, SIAM J. Numer. Anal..
[16] Peter Schröder,et al. Multiscale Representations for Manifold-Valued Data , 2005, Multiscale Model. Simul..