Photochemical defense as trait of fungi from Cortinarius subgenus Dermocybe

[1]  JAN T. Kim,et al.  Taming the beast: a revised classification of Cortinariaceae based on genomic data , 2022, Fungal Diversity.

[2]  B. Siewert,et al.  The photosensitizer emodin is concentrated in the gills of the fungus Cortinarius rubrophyllus. , 2022, Journal of photochemistry and photobiology. B, Biology.

[3]  R. Gstir,et al.  Targeted isolation of photoactive pigments from mushrooms yielded a highly potent new photosensitizer: 7,7′-biphyscion , 2021, Scientific Reports.

[4]  B. Siewert,et al.  Optimized isolation of 7,7′-biphyscion starting from Cortinarius rubrophyllus, a chemically unexplored fungal species rich in photosensitizers , 2021, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[5]  Emilia M. Zywot,et al.  Taking phototherapeutics from concept to clinical launch , 2021, Nature Reviews Chemistry.

[6]  B. Siewert,et al.  A New High-Throughput-Screening-Assay for Photoantimicrobials Based on EUCAST Revealed Unknown Photoantimicrobials in Cortinariaceae , 2021, Frontiers in Microbiology.

[7]  S. Ibrahim,et al.  Review for "Advanced extraction techniques for Berberis species phytochemicals: A review" , 2021 .

[8]  B. Siewert,et al.  A new High-Throughput-Screening-assay for Photoantimicrobials Based on EUCAST Revealed Photoantimicrobials in Cortinariaceae , 2021, bioRxiv.

[9]  B. Siewert Does the chemistry of fungal pigments demand the existence of photoactivated defense strategies in basidiomycetes? , 2021, Photochemical & Photobiological Sciences.

[10]  M. Calmon,et al.  Effect of Berberine Associated with Photodynamic Therapy in Cell Lines. , 2020, Photodiagnosis and photodynamic therapy.

[11]  D. Kessel Photodynamic therapy: apoptosis, paraptosis and beyond , 2020, Apoptosis.

[12]  Michael R Hamblin,et al.  Photodynamic Therapy for Cancer: What's Past is Prologue , 2019, Photochemistry and photobiology.

[13]  A. Preuß,et al.  Mosquito larvae control by photodynamic inactivation of their intestinal flora – a proof of principal study on Chaoborus sp.† , 2019, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[14]  H. Stuppner,et al.  The photoactivity of natural products - An overlooked potential of phytomedicines? , 2019, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[15]  H. Stuppner,et al.  A convenient workflow to spot photosensitizers revealed photo-activity in basidiomycetes , 2019, RSC advances.

[16]  R. Räisänen Fungal colorants in applications - focus on Cortinarius species , 2018, Coloration Technology.

[17]  Shanshan Tang,et al.  Amatoxin and phallotoxin concentrations in Amanita fuliginea: Influence of tissues, developmental stages and collection sites , 2017 .

[18]  Michael R Hamblin,et al.  Photoantimicrobials — are we afraid of the light ? , 2018 .

[19]  B. Siewert,et al.  An in vitro cell irradiation protocol for testing photopharmaceuticals and the effect of blue, green, and red light on human cancer cell lines , 2016, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[20]  K. Yaykasli,et al.  Amatoxin and phallotoxin concentration in Amanita phalloides spores and tissues , 2015, Toxicology and industrial health.

[21]  Rodney H. Jones,et al.  Concordance of seven gene genealogies compared to phenotypic data reveals multiple cryptic species in Australian dermocyboid Cortinarius (Agaricales). , 2014, Molecular phylogenetics and evolution.

[22]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[23]  K. Liimatainen,et al.  Cortinarius section Sanguinei in North America , 2013, Mycologia.

[24]  Jinsong Hu,et al.  Determination of amatoxins in different tissues and development stages of Amanita exitialis. , 2012, Journal of the science of food and agriculture.

[25]  M. Wainwright Natural Product Photoantimicrobials , 2007 .

[26]  Santi Nonell,et al.  Light and singlet oxygen in plant defense against pathogens: phototoxic phenalenone phytoalexins. , 2006, Accounts of chemical research.

[27]  C. Guinchard,et al.  Distribution of the amatoxins and phallotoxins in Amanita phalloides. Influence of the tissues and the collection site. , 1999, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[28]  J. Ammirati,et al.  Phylogenetic relationships in Dermocybe and related Cortinarius taxa based on nuclear ribosomal DNA internal transcribed spacers , 1997 .

[29]  M. Berenbaum Phototoxicity of plant secondary metabolites: insect and mammalian perspectives. , 1995, Archives of insect biochemistry and physiology.

[30]  I. Tebbett,et al.  Thin-layer chromatography as an aid for identification of Dermocybe species of Cortinarius , 1985 .

[31]  K. Høiland Cortinarius subgenus dermocybe , 1983 .

[32]  J. Mann Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products , 2011 .

[33]  M. Moser Die Röhrlinge und Blätterpilze (Polyporales, Boletales, Agaricales, Russulales) , 1978 .

[34]  M. Moser,et al.  Cortinarius Fr. und nahe verwandte Gattungen in Südamerika , 1975 .

[35]  W. Steglich,et al.  Isolation of flavomannin-6,6′-dimethyl ether and one of its racemates from higher fungi , 1972 .