OpenFermion: the electronic structure package for quantum computers
暂无分享,去创建一个
Yudong Cao | Ryan Babbush | Craig Gidney | Jarrod R. McClean | Bryan O'Gorman | Kevin J. Sung | Josh Izaac | Pranav Gokhale | Wei Sun | Nicholas Rubin | Thomas O'Brien | Cupjin Huang | Zhang Jiang | Damian S. Steiger | Nicolas P. D. Sawaya | Jhonathan Romero | Xinle Liu | Mark Steudtner | Chengyu Dai | Matthew Neeley | Daochen Wang | Vojtvech Havl'ivcek | Oscar Higgott | E. Schuyler Fried | Ian D. Kivlichan | Sam McArdle | Maxwell D. Radin | Isil Ozfidan | Brendan Gimby | Thomas Haner | Tarini Hardikar | Kanav Setia | Sukin Sim | Qiming Sun | Fang Zhang | Yudong Cao | J. McClean | Vojtěch Havlíček | R. Babbush | M. Neeley | Wei Sun | C. Gidney | Zhang Jiang | N. Rubin | I. Kivlichan | J. Romero | I. Ozfidan | E. Fried | J. Izaac | Oscar Higgott | Daochen Wang | Bruno Senjean | Sam McArdle | X. Bonet-Monroig | Sukin Sim | Fang Zhang | Cupjin Huang | M. Radin | M. Steudtner | Chengyu Dai | Xinle Liu | Thomas Häner | Kanav Setia | Tarini S Hardikar | T. O’Brien | P. Gokhale | B. O’Gorman | Kevin J Sung | Chengyu Dai | Brendan Gimby | Qiming Sun
[1] W. Marsden. I and J , 2012 .
[2] George C. Schatz,et al. The journal of physical chemistry letters , 2009 .
[3] I. Kassal,et al. Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.
[4] Alán Aspuru-Guzik,et al. A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.
[5] E Solano,et al. Digital Quantum Simulation of Minimal AdS/CFT. , 2016, Physical review letters.
[6] M. Hastings,et al. Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.
[7] Alán Aspuru-Guzik,et al. Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.
[8] M. Troyer,et al. Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.
[9] Matthias Troyer,et al. Operator locality in the quantum simulation of fermionic models , 2017, 1701.07072.
[10] E. Knill,et al. Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.
[11] J. McClean,et al. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.
[12] J. Whitfield. Communication: Spin-free quantum computational simulations and symmetry adapted states. , 2013, The Journal of chemical physics.
[13] Curtis L. Janssen,et al. The automated solution of second quantization equations with applications to the coupled cluster approach , 1991 .
[14] Alán Aspuru-Guzik,et al. Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.
[15] Peter Selinger,et al. A Brief Survey of Quantum Programming Languages , 2004, FLOPS.
[16] Alán Aspuru-Guzik,et al. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance , 2011, Scientific reports.
[17] M. Yung,et al. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.
[18] F K Wilhelm,et al. Linear and Logarithmic Time Compositions of Quantum Many-Body Operators. , 2017, Physical review letters.
[19] A. Kitaev,et al. Fermionic Quantum Computation , 2000, quant-ph/0003137.
[20] J. Whitfield,et al. Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.
[21] P. Coveney,et al. Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.
[22] Sarah E. Sofia,et al. The Bravyi-Kitaev transformation: Properties and applications , 2015 .
[23] Jun Li,et al. Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..
[24] Xiao Wang,et al. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. , 2017, Journal of chemical theory and computation.
[25] J. Whitfield,et al. Local spin operators for fermion simulations , 2016, 1605.09789.
[26] Takeshi Yanai,et al. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. , 2013, The Journal of chemical physics.
[27] A. Harrow,et al. Quantum algorithm for linear systems of equations. , 2008, Physical review letters.
[28] Kanav Setia,et al. Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer. , 2017, The Journal of chemical physics.
[29] Nathan Wiebe,et al. Bounding the costs of quantum simulation of many-body physics in real space , 2016, 1608.05696.
[30] Alexandru Paler,et al. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.
[31] B. Lanyon,et al. Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.
[32] Ryan Babbush,et al. The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.
[33] P. Love,et al. The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.
[34] J. Pittner,et al. Quantum computing applied to calculations of molecular energies: CH2 benchmark. , 2010, The Journal of chemical physics.
[35] Kevin J. Sung,et al. Quantum algorithms to simulate many-body physics of correlated fermions. , 2017, 1711.05395.
[36] Stephanie Wehner,et al. Fermion-to-qubit mappings with varying resource requirements for quantum simulation , 2017, New Journal of Physics.
[37] I. Kassal,et al. Preparation of many-body states for quantum simulation. , 2008, The Journal of chemical physics.
[38] J. McClean,et al. Application of fermionic marginal constraints to hybrid quantum algorithms , 2018, 1801.03524.
[39] H. Neven,et al. Low-Depth Quantum Simulation of Materials , 2018 .
[40] S. Hirata. Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .
[41] David Poulin,et al. The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..
[42] Annie Y. Wei,et al. Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.
[43] J. Herskowitz,et al. Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.
[44] Alán Aspuru-Guzik,et al. Exploiting Locality in Quantum Computation for Quantum Chemistry. , 2014, The journal of physical chemistry letters.
[45] Cormac Flanagan,et al. Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation , 2013, PLDI 2013.
[46] J. Carter,et al. Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.
[47] T. Monz,et al. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.
[48] Alán Aspuru-Guzik,et al. qHiPSTER: The Quantum High Performance Software Testing Environment , 2016, ArXiv.
[49] J. Gambetta,et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.
[50] William J. Zeng,et al. A Practical Quantum Instruction Set Architecture , 2016, ArXiv.
[51] S. Lloyd,et al. Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.
[52] Alán Aspuru-Guzik,et al. On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.
[53] M. Hastings,et al. Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.
[54] Daisuke Shiomi,et al. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules. , 2016, The journal of physical chemistry. A.
[55] J. Pittner,et al. Adiabatic state preparation study of methylene. , 2014, The Journal of chemical physics.
[56] Seth Lloyd,et al. Universal Quantum Simulators , 1996, Science.
[57] E. Wigner,et al. About the Pauli exclusion principle , 1928 .
[58] E. Knill,et al. Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.
[59] E. Wigner,et al. Über das Paulische Äquivalenzverbot , 1928 .
[60] D. Berry,et al. Improved techniques for preparing eigenstates of fermionic Hamiltonians , 2017, 1711.10460.
[61] D. Abrams,et al. Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.
[63] Ivano Tavernelli,et al. Optimizing qubit resources for quantum chemistry simulations in second quantization on a quantum computer , 2015, 1510.04048.
[64] J. Whitfield,et al. Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.
[65] M. Head‐Gordon,et al. Simulated Quantum Computation of Molecular Energies , 2005, Science.
[66] Alán Aspuru-Guzik,et al. Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation. , 2016, Journal of chemical theory and computation.
[67] L. Lamata,et al. From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.
[68] Jonathan M. Smith,et al. Programming the quantum future , 2015, Commun. ACM.
[69] R. Feynman. Simulating physics with computers , 1999 .
[70] Ryan Babbush,et al. Exponentially more precise quantum simulation of fermions in the configuration interaction representation , 2015, 1506.01029.
[71] William L. Jorgensen,et al. Journal of Chemical Information and Modeling , 2005, J. Chem. Inf. Model..
[72] M. Hastings,et al. Progress towards practical quantum variational algorithms , 2015, 1507.08969.