OpenFermion: the electronic structure package for quantum computers

Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the prohibitive amount of domain knowledge required in both the area of chemistry and quantum algorithms. To help bridge this gap and open the field to more researchers, we have developed the OpenFermion software package (this http URL). OpenFermion is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware. Beginning with an interface to common electronic structure packages, it simplifies the translation between a molecular specification and a quantum circuit for solving or studying the electronic structure problem on a quantum computer, minimizing the amount of domain expertise required to enter the field. The package is designed to be extensible and robust, maintaining high software standards in documentation and testing. This release paper outlines the key motivations behind design choices in OpenFermion and discusses some basic OpenFermion functionality which we believe will aid the community in the development of better quantum algorithms and tools for this exciting area of research.

[1]  W. Marsden I and J , 2012 .

[2]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[3]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[4]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[5]  E Solano,et al.  Digital Quantum Simulation of Minimal AdS/CFT. , 2016, Physical review letters.

[6]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[7]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[8]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[9]  Matthias Troyer,et al.  Operator locality in the quantum simulation of fermionic models , 2017, 1701.07072.

[10]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[11]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[12]  J. Whitfield Communication: Spin-free quantum computational simulations and symmetry adapted states. , 2013, The Journal of chemical physics.

[13]  Curtis L. Janssen,et al.  The automated solution of second quantization equations with applications to the coupled cluster approach , 1991 .

[14]  Alán Aspuru-Guzik,et al.  Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.

[15]  Peter Selinger,et al.  A Brief Survey of Quantum Programming Languages , 2004, FLOPS.

[16]  Alán Aspuru-Guzik,et al.  Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance , 2011, Scientific reports.

[17]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[18]  F K Wilhelm,et al.  Linear and Logarithmic Time Compositions of Quantum Many-Body Operators. , 2017, Physical review letters.

[19]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[20]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[21]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[22]  Sarah E. Sofia,et al.  The Bravyi-Kitaev transformation: Properties and applications , 2015 .

[23]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[24]  Xiao Wang,et al.  Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. , 2017, Journal of chemical theory and computation.

[25]  J. Whitfield,et al.  Local spin operators for fermion simulations , 2016, 1605.09789.

[26]  Takeshi Yanai,et al.  Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. , 2013, The Journal of chemical physics.

[27]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[28]  Kanav Setia,et al.  Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer. , 2017, The Journal of chemical physics.

[29]  Nathan Wiebe,et al.  Bounding the costs of quantum simulation of many-body physics in real space , 2016, 1608.05696.

[30]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[31]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[32]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[33]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[34]  J. Pittner,et al.  Quantum computing applied to calculations of molecular energies: CH2 benchmark. , 2010, The Journal of chemical physics.

[35]  Kevin J. Sung,et al.  Quantum algorithms to simulate many-body physics of correlated fermions. , 2017, 1711.05395.

[36]  Stephanie Wehner,et al.  Fermion-to-qubit mappings with varying resource requirements for quantum simulation , 2017, New Journal of Physics.

[37]  I. Kassal,et al.  Preparation of many-body states for quantum simulation. , 2008, The Journal of chemical physics.

[38]  J. McClean,et al.  Application of fermionic marginal constraints to hybrid quantum algorithms , 2018, 1801.03524.

[39]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[40]  S. Hirata Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .

[41]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[42]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[43]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[44]  Alán Aspuru-Guzik,et al.  Exploiting Locality in Quantum Computation for Quantum Chemistry. , 2014, The journal of physical chemistry letters.

[45]  Cormac Flanagan,et al.  Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation , 2013, PLDI 2013.

[46]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[47]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[48]  Alán Aspuru-Guzik,et al.  qHiPSTER: The Quantum High Performance Software Testing Environment , 2016, ArXiv.

[49]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[50]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[51]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[52]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[53]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[54]  Daisuke Shiomi,et al.  Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules. , 2016, The journal of physical chemistry. A.

[55]  J. Pittner,et al.  Adiabatic state preparation study of methylene. , 2014, The Journal of chemical physics.

[56]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[57]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[58]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[59]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[60]  D. Berry,et al.  Improved techniques for preparing eigenstates of fermionic Hamiltonians , 2017, 1711.10460.

[61]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[63]  Ivano Tavernelli,et al.  Optimizing qubit resources for quantum chemistry simulations in second quantization on a quantum computer , 2015, 1510.04048.

[64]  J. Whitfield,et al.  Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.

[65]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[66]  Alán Aspuru-Guzik,et al.  Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation. , 2016, Journal of chemical theory and computation.

[67]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[68]  Jonathan M. Smith,et al.  Programming the quantum future , 2015, Commun. ACM.

[69]  R. Feynman Simulating physics with computers , 1999 .

[70]  Ryan Babbush,et al.  Exponentially more precise quantum simulation of fermions in the configuration interaction representation , 2015, 1506.01029.

[71]  William L. Jorgensen,et al.  Journal of Chemical Information and Modeling , 2005, J. Chem. Inf. Model..

[72]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.