Partial-Order Reduction

Partial order reduction methods help reduce the time and space required to automatically verify concurrent asynchronous systems based on commutativity between concurrently executed transitions. We describe partial order reduction for various specification formalisms, such as LTL, CTL, and process algebra.

[1]  Pierre Wolper,et al.  An Algorithmic Approach for Checking Closure Properties of omega-Regular Languages , 1996, CONCUR.

[2]  Rocco De Nicola,et al.  Three logics for branching bisimulation , 1995, JACM.

[3]  Christos G. Cassandras,et al.  Languages and Automata , 2021, Introduction to Discrete Event Systems.

[4]  Pierre Wolper,et al.  Memory-efficient algorithms for the verification of temporal properties , 1990, Formal Methods Syst. Des..

[5]  Antti Valmari,et al.  Stubborn sets for reduced state space generation , 1991, Applications and Theory of Petri Nets.

[6]  Chao Wang,et al.  Monotonic Partial Order Reduction: An Optimal Symbolic Partial Order Reduction Technique , 2009, CAV.

[7]  Doron A. Peled,et al.  All from One, One for All: on Model Checking Using Representatives , 1993, CAV.

[8]  Gerard J. Holzmann,et al.  Coverage Preserving Reduction Strategies for Reachability Analysis , 1992, PSTV.

[9]  Antti Valmari,et al.  On-the-Fly Verification with Stubborn Sets , 1993, CAV.

[10]  Edmund M. Clarke,et al.  Characterizing Finite Kripke Structures in Propositional Temporal Logic , 1988, Theor. Comput. Sci..

[11]  Javier Esparza,et al.  Unfoldings - A Partial-Order Approach to Model Checking , 2008, Monographs in Theoretical Computer Science. An EATCS Series.

[12]  Dragan Bosnacki,et al.  On Commutativity Based Edge Lean Search , 2007, ICALP.

[13]  Doron A. Peled,et al.  Defining Conditional Independence Using Collapses , 1992, Theor. Comput. Sci..

[14]  Mihalis Yannakakis,et al.  On nested depth first search , 1996, The Spin Verification System.

[15]  Antti Valmari,et al.  Stubborn set methods for process algebras , 1997, Partial Order Methods in Verification.

[16]  Doron A. Peled,et al.  Relaxed Visibility Enhances Partial Order Reduction , 1997, Formal Methods Syst. Des..

[17]  Doron A. Peled,et al.  Combining partial order reductions with on-the-fly model-checking , 1994, Formal Methods Syst. Des..

[18]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[19]  Pierre Wolper,et al.  Using partial orders for the efficient verification of deadlock freedom and safety properties , 1991, Formal Methods Syst. Des..

[20]  Robert K. Brayton,et al.  Partial-Order Reduction in Symbolic State Space Exploration , 1997, CAV.

[21]  Leslie Lamport,et al.  What Good is Temporal Logic? , 1983, IFIP Congress.

[22]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[23]  Rob J. van Glabbeek,et al.  Branching time and abstraction in bisimulation semantics , 1996, JACM.

[24]  Glynn Winskel,et al.  An introduction to event structures , 1988, REX Workshop.

[25]  Gerard J. Holzmann,et al.  An improvement in formal verification , 1994, FORTE.

[26]  Doron A. Peled,et al.  Stutter-Invariant Temporal Properties are Expressible Without the Next-Time Operator , 1997, Inf. Process. Lett..

[27]  Doron A. Peled,et al.  Static Partial Order Reduction , 1998, TACAS.

[28]  Doron A. Peled,et al.  Using partial-order methods in the formal validation of industrial concurrent programs , 1996, ISSTA '96.

[29]  Patrice Godefroid,et al.  Refining Dependencies Improves Partial-Order Verification Methods (Extended Abstract) , 1993, CAV.

[30]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.

[31]  Doron A. Peled,et al.  An efficient verification method for parallel and distributed programs , 1988, REX Workshop.

[32]  Kenneth L. McMillan,et al.  Using Unfoldings to Avoid the State Explosion Problem in the Verification of Asynchronous Circuits , 1992, CAV.