Context-dependent Semantic Parsing for Time Expressions

We present an approach for learning context-dependent semantic parsers to identify and interpret time expressions. We use a Combinatory Categorial Grammar to construct compositional meaning representations, while considering contextual cues, such as the document creation time and the tense of the governing verb, to compute the final time values. Experiments on benchmark datasets show that our approach outperforms previous stateof-the-art systems, with error reductions of 13% to 21% in end-to-end performance.

[1]  Martin Kay,et al.  Syntactic Process , 1979, ACL.

[2]  James F. Allen An Interval-Based Representation of Temporal Knowledge , 1981, IJCAI.

[3]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[4]  Mark Steedman,et al.  Temporal Ontology and Temporal Reference , 1988, CL.

[5]  Raymond J. Mooney,et al.  Learning to Parse Database Queries Using Inductive Logic Programming , 1996, AAAI/IAAI, Vol. 2.

[6]  Mark Steedman,et al.  Surface structure and interpretation , 1996, Linguistic inquiry.

[7]  Dan Klein,et al.  Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network , 2003, NAACL.

[8]  James Pustejovsky,et al.  The Specification Language TimeML , 2005, The Language of Time - A Reader.

[9]  Luke S. Zettlemoyer,et al.  Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars , 2005, UAI.

[10]  Christopher D. Manning,et al.  Generating Typed Dependency Parses from Phrase Structure Parses , 2006, LREC.

[11]  Patrick Blackburn,et al.  The Language of Time: A Reader , 2006, Computational Linguistics.

[12]  James R. Curran,et al.  Wide-Coverage Efficient Statistical Parsing with CCG and Log-Linear Models , 2007, Computational Linguistics.

[13]  Luke S. Zettlemoyer,et al.  Online Learning of Relaxed CCG Grammars for Parsing to Logical Form , 2007, EMNLP.

[14]  Raymond J. Mooney,et al.  Learning Synchronous Grammars for Semantic Parsing with Lambda Calculus , 2007, ACL.

[15]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[16]  Luke S. Zettlemoyer,et al.  Learning Context-Dependent Mappings from Sentences to Logical Form , 2009, ACL.

[17]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[18]  Robert Dale,et al.  WikiWars: A New Corpus for Research on Temporal Expressions , 2010, EMNLP.

[19]  Ming-Wei Chang,et al.  Driving Semantic Parsing from the World’s Response , 2010, CoNLL.

[20]  Mark Steedman,et al.  Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification , 2010, EMNLP.

[21]  Mark Steedman,et al.  Lexical Generalization in CCG Grammar Induction for Semantic Parsing , 2011, EMNLP.

[22]  Raymond J. Mooney,et al.  Learning to Interpret Natural Language Navigation Instructions from Observations , 2011, Proceedings of the AAAI Conference on Artificial Intelligence.

[23]  Dan Klein,et al.  Learning Dependency-Based Compositional Semantics , 2011, CL.

[24]  Luke S. Zettlemoyer,et al.  Bootstrapping Semantic Parsers from Conversations , 2011, EMNLP.

[25]  Kenton C. T. Lee,et al.  SP4: scalable programmable packet processing platform , 2012, CCRV.

[26]  Tom M. Mitchell,et al.  Weakly Supervised Training of Semantic Parsers , 2012, EMNLP.

[27]  Michael Gertz,et al.  Temporal Tagging on Different Domains: Challenges, Strategies, and Gold Standards , 2012, LREC.

[28]  Daniel Jurafsky,et al.  Parsing Time: Learning to Interpret Time Expressions , 2012, NAACL.

[29]  Angel X. Chang,et al.  SUTime: A library for recognizing and normalizing time expressions , 2012, LREC.

[30]  James Pustejovsky,et al.  SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations , 2013, *SEMEVAL.

[31]  Dan Roth,et al.  Learning from natural instructions , 2011, Machine Learning.

[32]  Luke S. Zettlemoyer,et al.  UW SPF: The University of Washington Semantic Parsing Framework , 2013, ArXiv.

[33]  Gabor Angeli,et al.  Language-Independent Discriminative Parsing of Temporal Expressions , 2013, ACL.

[34]  Michael Gertz,et al.  Multilingual and cross-domain temporal tagging , 2012, Language Resources and Evaluation.

[35]  Alexander Yates,et al.  Semantic Parsing Freebase: Towards Open-domain Semantic Parsing , 2013, *SEMEVAL.

[36]  Nate Chambers NavyTime: Event and Time Ordering from Raw Text , 2013, SemEval@NAACL-HLT.

[37]  Steven Bethard,et al.  A Synchronous Context Free Grammar for Time Normalization , 2013, EMNLP.

[38]  Steven Bethard,et al.  ClearTK-TimeML: A minimalist approach to TempEval 2013 , 2013, *SEMEVAL.

[39]  Siddhartha S. Srinivasa,et al.  Legible user input for intent prediction , 2013, 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[40]  Eunsol Choi,et al.  Scaling Semantic Parsers with On-the-Fly Ontology Matching , 2013, EMNLP.

[41]  Luke S. Zettlemoyer,et al.  Weakly Supervised Learning of Semantic Parsers for Mapping Instructions to Actions , 2013, TACL.

[42]  Goran Nenadic,et al.  ManTIME: Temporal expression identification and normalization in the TempEval-3 challenge , 2013, SemEval@NAACL-HLT.

[43]  Nicoletta Calzolari,et al.  Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014) , 2014, LREC 2014.