Marginal quenches and drives in Tomonaga-Luttinger liquids

We study Tomonaga-Luttinger liquids thrown out of equilibrium by marginal deformations in the form of interaction modulations. This is modeled by quenching or periodically driving the Luttinger parameter or, equivalently, the compactification radius of the free boson conformal field theory between two different values. We obtain exact analytical results for the evolution of the Loschmidt echo and observables such as the particle and energy densities. Starting from generic initial states, the quench dynamics are shown to exhibit revivals and temporal orthogonalities. For the periodic drive, we show stability or instability of time-evolved physical quantities dependent on the drive parameters. We also compare the corresponding marginally deformed thermal density matrices by non-perturbatively evaluating their Rényi divergence as a Euclidean quench. All the dynamics are shown to be crucially dependent on the ratio of the Luttinger parameters, which corresponds to the Zamolodchikov distance in the space of marginal deformations. Our setup is equivalently interpreted as the dynamics of the bosonic string upon instantaneous changes of the target-space radius. ar X iv :2 20 6. 11 28 7v 2 [ co nd -m at .s ta tm ec h] 9 J an 2 02 3

[1]  P. Moosavi Exact Dirac-Bogoliubov-de Gennes dynamics for inhomogeneous quantum liquids , 2022, 2208.14467.

[2]  E. Demler,et al.  Many-body parametric resonances in the driven sine-Gordon model , 2022, Physical Review B.

[3]  L. Foini,et al.  Electrostatic solution of massless quenches in Luttinger liquids , 2022, SciPost Physics.

[4]  M. Gluza,et al.  Breaking of Huygens–Fresnel principle in inhomogeneous Tomonaga–Luttinger liquids , 2021, Journal of Physics A: Mathematical and Theoretical.

[5]  A. Vishwanath,et al.  Periodically, quasiperiodically, and randomly driven conformal field theories , 2021 .

[6]  P. Chudzinski,et al.  Nonequilibrium Floquet Steady States of Time-Periodic Driven Luttinger Liquids. , 2020, Physical review letters.

[7]  Bastien Lapierre,et al.  Geometric approach to inhomogeneous Floquet systems , 2020, Physical Review B.

[8]  D. Schuricht,et al.  The quantum sine-Gordon model with quantum circuits , 2020, Nuclear Physics B.

[9]  L. Foini,et al.  Large-scale thermalization, prethermalization, and impact of temperature in the quench dynamics of two unequal Luttinger liquids , 2020, Physical Review Research.

[10]  Per Moosavi,et al.  Inhomogeneous Conformal Field Theory Out of Equilibrium , 2019, Annales Henri Poincaré.

[11]  R. Chitra,et al.  Fine structure of heating in a quasiperiodically driven critical quantum system , 2020, Physical Review Research.

[12]  E. Demler,et al.  Lattice modulation spectroscopy of one-dimensional quantum gases: Universal scaling of the absorbed energy , 2020, 2003.05373.

[13]  S. Datta,et al.  Rényi divergences from Euclidean quenches , 2019, Journal of High Energy Physics.

[14]  R. Chitra,et al.  Emergent black hole dynamics in critical Floquet systems , 2019, Physical Review Research.

[15]  A. Vishwanath,et al.  Emergent Spatial Structure and Entanglement Localization in Floquet Conformal Field Theory , 2019, 1908.05289.

[16]  G. Landi,et al.  Exact solution of time-dependent Lindblad equations with closed algebras , 2018, Physical Review A.

[17]  J. Oppenheim,et al.  Holographic second laws of black hole thermodynamics , 2018, Journal of High Energy Physics.

[18]  X. Wen,et al.  Floquet conformal field theory , 2018, 1805.00031.

[19]  G. Landi,et al.  Lindblad-Floquet description of finite-time quantum heat engines , 2018, Physical Review A.

[20]  M. Heyl Dynamical quantum phase transitions: a review , 2017, Reports on progress in physics. Physical Society.

[21]  K. Gawȩdzki,et al.  Finite-Time Universality in Nonequilibrium CFT , 2017, 1712.00141.

[22]  J. Goold,et al.  Dynamical phase transitions and temporal orthogonality in one-dimensional hard-core bosons: from the continuum to the lattice , 2017 .

[23]  Jean-Marie St'ephan Return probability after a quench from a domain wall initial state in the spin-1/2 XXZ chain , 2017, 1707.06625.

[24]  A. Polkovnikov,et al.  Integrable Floquet dynamics , 2017, 1701.05276.

[25]  F. A. Smirnov,et al.  On space of integrable quantum field theories , 2016, 1608.05499.

[26]  P. Calabrese,et al.  Relative entanglement entropies in 1 + 1-dimensional conformal field theories , 2016, 1612.00659.

[27]  J. Cardy,et al.  Quantum quenches in 1  +  1 dimensional conformal field theories , 2016, 1603.02889.

[28]  M. Buchhold,et al.  Prethermalization and thermalization of a quenched interacting Luttinger liquid , 2015, 1510.03447.

[29]  Nima Lashkari Modular Hamiltonian for Excited States in Conformal Field Theory. , 2015, Physical review letters.

[30]  R. Tateo,et al.  T T-deformed 2D quantum eld theories , 2016 .

[31]  Aitor Lewkowycz,et al.  Relative entropy equals bulk relative entropy , 2015, 1512.06431.

[32]  J. Lebowitz,et al.  Steady States and Universal Conductance in a Quenched Luttinger Model , 2015, 1511.01884.

[33]  J. Cardy Quantum quenches to a critical point in one dimension: some further results , 2015, 1507.07266.

[34]  P. Calabrese,et al.  Quantum quench within the gapless phase of the spin-1/2 Heisenberg XXZ spin chain , 2015, 1507.03492.

[35]  E. Langmann,et al.  Construction by bosonization of a fermion-phonon model , 2015, 1503.01835.

[36]  B. Dóra,et al.  Absence of Orthogonality Catastrophe after a Spatially Inhomogeneous Interaction Quench in Luttinger Liquids. , 2014, Physical review letters.

[37]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[38]  V. Balasubramanian,et al.  Relative entropy and proximity of quantum field theories , 2014, 1410.6809.

[39]  Nima Lashkari Relative entropies in conformal field theory. , 2014, Physical review letters.

[40]  J. Cardy Thermalization and revivals after a quantum quench in conformal field theory. , 2014, Physical review letters.

[41]  P. Calabrese,et al.  Interaction quench in a Lieb–Liniger model and the KPZ equation with flat initial conditions , 2014, 1402.1278.

[42]  Edmond Orignac,et al.  Correlation dynamics during a slow interaction quench in a one-dimensional Bose gas. , 2013, Physical review letters.

[43]  J. Caux,et al.  Solution for an interaction quench in the Lieb-Liniger Bose gas , 2013, 1308.4310.

[44]  A. Agarwal,et al.  Finite-time interaction quench in a Luttinger liquid , 2013, 1311.1926.

[45]  A. Mirlin,et al.  Interaction Quench in Nonequilibrium Luttinger Liquids , 2013, 1310.0735.

[46]  B. D'ora,et al.  Quantum quench in the Luttinger model with finite temperature initial state , 2013, 1307.7582.

[47]  Ling-Yan Hung,et al.  Relative entropy and holography , 2013, 1305.3182.

[48]  N. Andrei,et al.  Exact formalism for the quench dynamics of integrable models , 2013, 1304.0506.

[49]  B. Dóra,et al.  Loschmidt echo and the many-body orthogonality catastrophe in a qubit-coupled Luttinger liquid. , 2013, Physical review letters.

[50]  Kerstin Jordaan,et al.  Real zeros of 2F1 hypergeometric polynomials , 2013, J. Comput. Appl. Math..

[51]  F. Pollmann,et al.  Linear quantum quench in the Heisenberg XXZ chain : Time-dependent Luttinger-model description of a lattice system , 2012, 1211.1195.

[52]  M. Devoret,et al.  Inelastic microwave photon scattering off a quantum impurity in a Josephson-junction array. , 2012, Physical review letters.

[53]  M. Heyl,et al.  Parametric instability in periodically driven Luttinger liquids , 2012, 1206.2504.

[54]  D. Schuricht,et al.  Luttinger-liquid universality in the time evolution after an interaction quench. , 2012, Physical review letters.

[55]  D. Schuricht,et al.  Quench dynamics of the Tomonaga–Luttinger model with momentum-dependent interaction , 2012, 1203.0932.

[56]  J. Caux,et al.  Exact time evolution of space- and time-dependent correlation functions after an interaction quench in the one-dimensional Bose gas , 2012, 1201.1885.

[57]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[58]  R. Citro,et al.  One dimensional bosons: From condensed matter systems to ultracold gases , 2011, 1101.5337.

[59]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[60]  M. Fleischhauer,et al.  Dynamics of pair correlations in the attractive Lieb-Liniger gas. , 2010, Physical review letters.

[61]  Jarrett L. Lancaster,et al.  Quantum quenches in an XXZ spin chain from a spatially inhomogeneous initial state. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  B. Schmidt,et al.  Fermionization dynamics of a strongly interacting one-dimensional Bose gas after an interaction quench , 2009, 0910.1749.

[63]  M. Cazalilla,et al.  Quantum quench dynamics of the Luttinger model , 2009, 1003.5170.

[64]  M. Kollar,et al.  Relaxation of a one-dimensional Mott insulator after an interaction quench , 2008, 0804.2254.

[65]  C. Bachas,et al.  Fusion of conformal interfaces , 2007, 0712.0076.

[66]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[67]  J. Cardy,et al.  Quantum quenches in extended systems , 2007, 0704.1880.

[68]  M. Lukin,et al.  Spectroscopy of collective excitations in interacting low-dimensional many-body systems using quench dynamics. , 2007, Physical review letters.

[69]  E. Demler,et al.  Linear response theory for a pair of coupled one-dimensional condensates of interacting atoms , 2007, cond-mat/0701421.

[70]  F. Larsen,et al.  Partition functions and elliptic genera from supergravity , 2006, hep-th/0607138.

[71]  M. Cazalilla Effect of suddenly turning on interactions in the Luttinger model. , 2006, Physical review letters.

[72]  M. Flohr,et al.  Conformal Field Theory , 2006 .

[73]  J. Cardy,et al.  Evolution of entanglement entropy in one-dimensional systems , 2005, cond-mat/0503393.

[74]  D. Gangardt,et al.  Low-dimensional trapped gases , 2004, cond-mat/0409230.

[75]  M. Cazalilla Bosonizing one-dimensional cold atomic gases , 2003, cond-mat/0307033.

[76]  Thierry Giamarchi,et al.  Quantum physics in one dimension , 2004 .

[77]  D. Roggenkamp,et al.  Current-current deformations of conformal field theories, and WZW models , 2003, hep-th/0304234.

[78]  G. Blatter,et al.  Commensurate-incommensurate transition of cold atoms in an optical lattice. , 2002, Physical review letters.

[79]  S. Wadia,et al.  Microscopic formulation of black holes in string theory , 2002, hep-th/0203048.

[80]  J. Boer,et al.  Permeable conformal walls and holography , 2001, hep-th/0111210.

[81]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[82]  G. Cuniberti,et al.  Fermi liquids and Luttinger liquids , 1998, cond-mat/9807366.

[83]  S. Chaudhuri,et al.  A criterion for integrably marginal operators , 1989 .

[84]  P. Ginsparg,et al.  Curiosities at c = 1 , 1988 .

[85]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[86]  Alexander B. Zamolodchikov,et al.  Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory , 1986 .

[87]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[88]  F. Haldane,et al.  Effective Harmonic-Fluid Approach to Low-Energy Properties of One-Dimensional Quantum Fluids , 1981 .

[89]  F. D. M. Haldanef ‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas , 1981 .

[90]  John Corcoran,et al.  String theory , 1974, Journal of Symbolic Logic.

[91]  V. S. Popov,et al.  Group-theoretical aspects of the variable frequency oscillator problem , 1969 .

[92]  E. Lieb,et al.  Exact Solution of a Many-Fermion System and Its Associated Boson Field , 1965 .

[93]  J. M. Luttinger An Exactly Soluble Model of a Many‐Fermion System , 1963 .

[94]  Tom M. Apostol,et al.  On the Lerch zeta function. , 1951 .

[95]  S. Tomonaga Remarks on Bloch's Method of Sound Waves applied to Many-Fermion Problems , 1950 .