A fast marching approach to multidimensional extrapolation

A computationally efficient approach to extrapolating a data field with second order accuracy is presented. This is achieved through the sequential solution of non-homogeneous linear static Hamilton-Jacobi equations, which can be performed rapidly using the fast marching methodology. In particular, the method relies on a fast marching calculation of the distance from the manifold @C that separates the subdomain @W"i"n over which the quanity is known from the subdomain @W"o"u"t over which the quantity is to be extrapolated. A parallel algorithm is included and discussed in the appendices. Results are compared to the multidimensional partial differential equation (PDE) extrapolation approach of Aslam (Aslam (2004) [31]). It is shown that the rate of convergence of the extrapolation within a narrow band near @C is controlled by both the number of successive extrapolations performed and the order of accuracy of the spatial discretization. For m successive extrapolating steps and a spatial discretization scheme of order N, the rate of convergence in a narrow band is shown to be min(N+1,m+1). Results show that for a wide range of error levels, the fast marching extrapolation strategy leads to dramatic improvements in computational cost when compared to the PDE approach.

[1]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[2]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[3]  Frédéric Gibou,et al.  A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..

[4]  Heinz Pitsch,et al.  Large-Eddy Simulation of Turbulent Reacting Flows , 2008 .

[5]  Heinz Pitsch,et al.  An accurate conservative level set/ghost fluid method for simulating turbulent atomization , 2008, J. Comput. Phys..

[6]  David L. Chopp,et al.  Another Look at Velocity Extensions in the Level Set Method , 2009, SIAM J. Sci. Comput..

[7]  T. Aslam A partial differential equation approach to multidimensional extrapolation , 2004 .

[8]  Tariq D. Aslam,et al.  A Level Set Algorithm for Tracking Discontinuities in Hyperbolic Conservation Laws II: Systems of Equations , 2003, J. Sci. Comput..

[9]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[10]  Olivier Desjardins,et al.  Numerical investigation of gravitational effects in horizontal annular liquid–gas flow , 2014 .

[11]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[12]  Olivier Desjardins,et al.  A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows , 2013, J. Comput. Phys..

[13]  James A. Sethian,et al.  Theory, algorithms, and applications of level set methods for propagating interfaces , 1996, Acta Numerica.

[14]  Ronald Fedkiw,et al.  Regular Article: The Ghost Fluid Method for Deflagration and Detonation Discontinuities , 1999 .

[15]  J. Freund,et al.  An interface capturing method for the simulation of multi-phase compressible flows , 2010, J. Comput. Phys..

[16]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[17]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[18]  Two‐phase electro‐hydrodynamic flow modeling by a conservative level set model , 2013, Electrophoresis.

[19]  Tariq D. Aslam,et al.  A level-set algorithm for tracking discontinuities in hyperbolic conservation laws , 2001 .

[20]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[21]  Olivier Desjardins,et al.  A localized re-initialization equation for the conservative level set method , 2014, J. Comput. Phys..

[22]  Sébastien Tanguy,et al.  A Level Set Method for vaporizing two-phase flows , 2007, J. Comput. Phys..

[23]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[24]  J. Sethian,et al.  Dynamical behaviour of a premixed turbulent open V-flame , 1995 .

[25]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[26]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[27]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[28]  Heinz Pitsch,et al.  A spectrally refined interface approach for simulating multiphase flows , 2009, J. Comput. Phys..

[29]  Olivier Desjardins,et al.  A ghost fluid, level set methodology for simulating multiphase electrohydrodynamic flows with application to liquid fuel injection , 2010, J. Comput. Phys..

[30]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[31]  David L. Chopp,et al.  Recent Advances in the Level Set Method , 2005 .

[32]  M. Herrmann A Domain Decomposition Parallelization of the Fast Marching Method , 2003 .

[33]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[34]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[35]  I. Mazin,et al.  Theory , 1934 .

[36]  J. Strain A Fast Modular Semi-Lagrangian Method for Moving Interfaces , 2000 .

[37]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[38]  Olivier Desjardins,et al.  DIRECT NUMERICAL AND LARGE-EDDY SIMULATION OF PRIMARY ATOMIZATION IN COMPLEX GEOMETRIES , 2013 .

[39]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[41]  J. Sethian,et al.  Projection methods coupled to level set interface techniques , 1992 .