The advanced-step NMPC controller: Optimality, stability and robustness

Widespread application of dynamic optimization with fast optimization solvers leads to increased consideration of first-principles models for nonlinear model predictive control (NMPC). However, significant barriers to this optimization-based control strategy are feedback delays and consequent loss of performance and stability due to on-line computation. To overcome these barriers, recently proposed NMPC controllers based on nonlinear programming (NLP) sensitivity have reduced on-line computational costs and can lead to significantly improved performance. In this study, we extend this concept through a simple reformulation of the NMPC problem and propose the advanced-step NMPC controller. The main result of this extension is that the proposed controller enjoys the same nominal stability properties of the conventional NMPC controller without computational delay. In addition, we establish further robustness properties in a straightforward manner through input-to-state stability concepts. A case study example is presented to demonstrate the concepts.

[1]  Lorenz T. Biegler,et al.  A Tool to Analyze Robust Stability for Constrained MPC , 2004 .

[2]  Wolfgang Marquardt,et al.  Sensitivity-Based Solution Updates in Closed-Loop Dynamic Optimization , 2004 .

[3]  Lorenz T. Biegler,et al.  On-line implementation of nonlinear MPC: an experimental case study , 2000 .

[4]  M. Diehl,et al.  Nominal stability of real-time iteration scheme for nonlinear model predictive control , 2005 .

[5]  David Q. Mayne,et al.  Nonlinear Model Predictive Control:Challenges and Opportunities , 2000 .

[6]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[7]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[8]  Lorenz T. Biegler,et al.  Efficient Solution of Dynamic Optimization and NMPC Problems , 2000 .

[9]  Martin Guay,et al.  A new real-time perspective on non-linear model predictive control , 2006 .

[10]  Lorenz T. Biegler,et al.  A tool to analyze robust stability for model predictive controllers , 1999 .

[11]  Lorenz T. Biegler,et al.  A tool to analyze robust stability for constrained nonlinear MPC , 2008 .

[12]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[13]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[14]  L. Biegler,et al.  A fast moving horizon estimation algorithm based on nonlinear programming sensitivity , 2008 .

[15]  Zoltan K. Nagy,et al.  Real-Time Implementation of Nonlinear Model Predictive Control of Batch Processes in an Industrial Framework , 2007 .

[16]  Lorenz T. Biegler,et al.  Process control strategies for constrained nonlinear systems , 1988 .

[17]  Christof Büskens,et al.  Sensitivity Analysis and Real-Time Control of Parametric Optimal Control Problems Using Nonlinear Programming Methods , 2001 .

[18]  G. A. Hicks,et al.  Approximation methods for optimal control synthesis , 1971 .

[19]  Toshiyuki Ohtsuka,et al.  A continuation/GMRES method for fast computation of nonlinear receding horizon control , 2004, Autom..

[20]  Anthony V. Fiacco,et al.  Sensitivity analysis for nonlinear programming using penalty methods , 1976, Math. Program..

[21]  Lorenz T. Biegler,et al.  An extension of Newton-type algorithms for nonlinear process control , 1995, Autom..

[22]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[23]  J. O'Reilly,et al.  Model predictive control of nonlinear systems: computational burden and stability , 2000 .

[24]  Victor M. Zavala,et al.  Fast implementations and rigorous models: Can both be accommodated in NMPC? , 2008 .

[25]  Riccardo Scattolini,et al.  Robustness and robust design of MPC for nonlinear systems , 2007 .

[26]  Rüdiger Franke,et al.  Integration of Advanced Model Based Control with Industrial IT , 2007 .

[27]  Paul M. Frank,et al.  Advances in control : highlights of ECC '99 , 1999 .

[28]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[29]  R. Donald Bartusiak,et al.  NLMPC: A Platform for Optimal Control of Feed- or Product-Flexible Manufacturing , 2007 .

[30]  Eduardo Sontag,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999, at - Automatisierungstechnik.

[31]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[32]  Frank Allgöwer,et al.  Nonlinear Model Predictive Control , 2007 .

[33]  H. J. Pesch Real-time computation of feedback controls for constrained optimal control problems. Part 2: A correction method based on multiple shooting , 1989 .

[34]  H. Maurer,et al.  Sensitivity Analysis and Real-Time Optimization of Parametric Nonlinear Programming Problems , 2001 .

[35]  L. Biegler,et al.  A FAST COMPUTATIONAL FRAMEWORK FOR LARGE-SCALE MOVING HORIZON ESTIMATION , 2007 .

[36]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[37]  A. Grancharova,et al.  Computational Aspects of Approximate Explicit Nonlinear Model Predictive Control , 2007 .

[38]  G. Nicolao,et al.  Stability and Robustness of Nonlinear Receding Horizon Control , 2000 .

[39]  A. Mayne Parametric Optimization: Singularities, Pathfollowing and Jumps , 1990 .

[40]  Frank Allgöwer,et al.  Computational Delay in Nonlinear Model Predictive Control , 2004 .